Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res Perspect ; 11(5): e01136, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37750203

RESUMO

Over a decade's experience of post-stroke rehabilitation by administering the specific anti-TNF biological, etanercept, by the novel perispinal route, is consistent with a wide range of chronically diminished neurological function having been caused by persistent excessive cerebral levels of TNF. We propose that this TNF persistence, and cerebral disease chronicity, largely arises from a positive autocrine feedback loop of this cytokine, allowing the persistence of microglial activation caused by the excess TNF that these cells produce. It appears that many of these observations have never been exploited to construct a broad understanding and treatment of certain chronic, yet reversible, neurological illnesses. We propose that this treatment allows these chronically activated microglia to revert to their normal quiescent state, rather than simply neutralizing the direct harmful effects of this cytokine after its release from microglia. Logically, this also applies to the chronic cerebral aspects of various other neurological conditions characterized by activated microglia. These include long COVID, Lyme disease, post-stroke syndromes, traumatic brain injury, chronic traumatic encephalopathy, post-chemotherapy, post-irradiation cerebral dysfunction, cerebral palsy, fetal alcohol syndrome, hepatic encephalopathy, the antinociceptive state of morphine tolerance, and neurogenic pain. In addition, certain psychiatric states, in isolation or as sequelae of infectious diseases such as Lyme disease and long COVID, are candidates for being understood through this approach and treated accordingly. Perispinal etanercept provides the prospect of being able to treat various chronic central nervous system illnesses, whether they are of infectious or non-infectious origin, through reversing excess TNF generation by microglia.


Assuntos
Doenças do Sistema Nervoso , Fator de Necrose Tumoral alfa , Humanos , Doença Crônica , Citocinas , Etanercepte/farmacologia , Etanercepte/uso terapêutico , Microglia , Doenças do Sistema Nervoso/tratamento farmacológico , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa/fisiologia , Retroalimentação Fisiológica
2.
Front Mol Neurosci ; 16: 1338065, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38299128

RESUMO

Introduction: Accurate modelling of molecular changes in Alzheimer's disease (AD) dementia is crucial for understanding the mechanisms driving neuronal pathology and for developing treatments. Synaptic dysfunction has long been implicated as a mechanism underpinning memory dysfunction in AD and may result in part from changes in adenosine deaminase acting on RNA (ADAR) mediated RNA editing of the GluA2 subunit of AMPA receptors and changes in AMPA receptor function at the post synaptic cleft. However, few studies have investigated changes in proteins which influence RNA editing and notably, AD studies that focus on studying changes in protein expression, rather than changes in mRNA, often use traditional western blotting. Methods: Here, we demonstrate the value of automated capillary western blotting to investigate the protein expression of AMPA receptor subunits (GluA1-4), the ADAR RNA editing proteins (ADAR1-3), and proteins known to regulate RNA editing (PIN1, WWP2, FXR1P, and CREB1), in the J20 AD mouse model. We describe extensive optimisation and validation of the automated capillary western blotting method, demonstrating the use of total protein to normalise protein load, in addition to characterising the optimal protein/antibody concentrations to ensure accurate protein quantification. Following this, we assessed changes in proteins of interest in the hippocampus of 44-week-old J20 AD mice. Results: We observed an increase in the expression of ADAR1 p110 and GluA3 and a decrease in ADAR2 in the hippocampus of 44-week-old J20 mice. These changes signify a shift in the balance of proteins that play a critical role at the synapse. Regression analysis revealed unique J20-specific correlations between changes in AMPA receptor subunits, ADAR enzymes, and proteins that regulate ADAR stability in J20 mice, highlighting potential mechanisms mediating RNA-editing changes found in AD. Discussion: Our findings in J20 mice generally reflect changes seen in the human AD brain. This study underlines the importance of novel techniques, like automated capillary western blotting, to assess protein expression in AD. It also provides further evidence to support the hypothesis that a dysregulation in RNA editing-related proteins may play a role in the initiation and/or progression of AD.

3.
Neurobiol Learn Mem ; 187: 107556, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34798235

RESUMO

Research from human and animal studies has found that after responding has been successfully reduced following treatment it can return upon exposure to certain contexts. An individual in recovery from alcohol use disorder, for example, might relapse to drinking upon visiting their favourite bar. However, most of these data have been derived from experiments involving a single (active) response, and the context-dependence of returned responding in situations involving choice between multiple actions and outcomes is less well-understood. We thus investigated how outcome-selective reinstatement - a procedure involving choice between two actions and outcomes - was affected by altering the physical context in rats. In Experiment 1, rats were trained over 6 days to press a left lever for one food outcome (pellets or sucrose) and a right lever for the other outcome. Then, rats received an extinction session in either the same context (A) as lever press training, or in a different context (B). Rats were tested immediately (5 min) after extinction in Context A or B such that there were four groups in total: AAA, ABB, ABA, and AAB. Reinstatement testing consisted of one food outcome being delivered 'freely' (i.e. unearned by lever pressing and unsignalled by cues) to the food magazine every 4 min in the following order: Sucrose, Pellet, Pellet, Sucrose. Selective reinstatement was considered intact if pellet delivery increased pressing selectively on the pellet lever, and sucrose delivery selectively increased pressing on the sucrose lever. This result (Reinstated > Nonreinstated) was observed for rats in group AAA and ABB, but not rats in groups ABA and AAB. Experiment 2 was conducted identically, except that rats received two extinction sessions over two days and tested one day later. This time, all groups demonstrated intact outcome-selective reinstatement regardless of context. Analysis of c-Fos expression in several brain regions revealed that only c-Fos expression in the posterior dorsomedial striatum (pDMS) was related to intact reinstatement performance. Overall, these results suggest that outcome-selective reinstatement is predominantly context-independent, and that intact reinstatement is related to neuronal activity in the pDMS.


Assuntos
Condicionamento Operante , Sinais (Psicologia) , Extinção Psicológica/fisiologia , Comportamento Alimentar , Neostriado/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Comportamento Animal/fisiologia , Feminino , Masculino , Ratos , Autoadministração
4.
J Neurosci ; 41(18): 4120-4130, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33888604

RESUMO

Memories are rarely acquired under ideal conditions, rendering them vulnerable to profound omissions, errors, and ambiguities. Consistent with this, recent work using context fear conditioning has shown that memories formed after inadequate learning time display a variety of maladaptive properties, including overgeneralization to similar contexts. However, the neuronal basis of such poor learning and memory imprecision remains unknown. Using c-fos to track neuronal activity in male mice, we examined how these learning-dependent changes in context fear memory precision are encoded in hippocampal ensembles. We found that the total number of c-fos-encoding cells did not correspond with learning history but instead more closely reflected the length of the session immediately preceding c-fos measurement. However, using a c-fos-driven tagging method (TRAP2 mouse line), we found that the degree of learning and memory specificity corresponded with neuronal activity in a subset of dentate gyrus cells that were active during both learning and recall. Comprehensive memories acquired after longer learning intervals were associated with more double-labeled cells. These were preferentially reactivated in the conditioning context compared with a similar context, paralleling behavioral discrimination. Conversely, impoverished memories acquired after shorter learning intervals were associated with fewer double-labeled cells. These were reactivated equally in both contexts, corresponding with overgeneralization. Together, these findings provide two surprising conclusions. First, engram size varies with learning. Second, larger engrams support better neuronal and behavioral discrimination. These findings are incorporated into a model that describes how neuronal activity is influenced by previous learning and present experience, thus driving behavior.SIGNIFICANCE STATEMENT Memories are not always formed under ideal circumstances. This is especially true in traumatic situations, such as car accidents, where individuals have insufficient time to process what happened around them. Such memories have the potential to overgeneralize to irrelevant situations, producing inappropriate fear and contributing to disorders, such as post-traumatic stress disorder. However, it is unknown how such poorly formed fear memories are encoded within the brain. We find that restricting learning time results in fear memories that are encoded by fewer hippocampal cells. Moreover, these fewer cells are inappropriately reactivated in both dangerous and safe contexts. These findings suggest that fear memories formed at brief periods overgeneralize because they lack the detail-rich information necessary to support neuronal discrimination.


Assuntos
Aprendizagem/fisiologia , Memória/fisiologia , Animais , Condicionamento Clássico , Giro Denteado/fisiologia , Discriminação Psicológica , Antagonistas de Estrogênios/farmacologia , Medo/psicologia , Hipocampo/fisiologia , Aprendizagem/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Psicológicos , Neurônios/fisiologia , Proteínas Proto-Oncogênicas c-fos/genética , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia
5.
Brain Behav Immun ; 92: 57-66, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33221488

RESUMO

Tobacco smoking and high-fat diet (HFD) independently impair short-term memory. E-cigarettes produce e-vapour containing flavourings and nicotine. Here, we investigated whether e-vapour inhalation interacts with HFD to affect short-term memory and neural integrity. Balb/c mice (7 weeks, male) were fed a HFD (43% fat, 20 kJ/g) for 16 weeks. In the last 6 weeks, half of the mice were exposed to tobacco-flavoured e-vapour from nicotine-containing (18 mg/L) or nicotine-free (0 mg/L) e-fluids twice daily. Short-term memory function was measured in week 15. HFD alone did not impair memory function, but increased brain phosphorylated (p)-Tau and astrogliosis marker, while neuron and microglia levels were decreased. E-vapour exposure significantly impaired short-term memory function independent of diet and nicotine. Nicotine free e-vapour induced greater changes compared to the nicotine e-vapour and included, increased systemic cytokines, increased brain p-Tau and decreased postsynaptic density protein (PSD)-95 levels in chow-fed mice, and decreased astrogliosis marker, increased microglia and increased glycogen synthase kinase levels in HFD-fed mice. Increased hippocampal apoptosis was also differentially observed in chow and HFD mice. In conclusion, E-vapour exposure impaired short-term memory independent of diet and nicotine, and was correlated to increased systemic inflammation, reduced PSD-95 level and increased astrogliosis in chow-fed mice, but decreased gliosis and increased microglia in HFD-fed mice, indicating the inflammatory nature of e-vapour leading to short term memory impairment.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Animais , Encéfalo , Dieta Hiperlipídica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nicotina
6.
Mol Brain ; 13(1): 27, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32102661

RESUMO

Calcium (Ca2+)-permeable AMPA receptors may, in certain circumstances, contribute to normal synaptic plasticity or to neurodegeneration. AMPA receptors are Ca2+-permeable if they lack the GluA2 subunit or if GluA2 is unedited at a single nucleic acid, known as the Q/R site. In this study, we examined mice engineered with a point mutation in the intronic editing complementary sequence (ECS) of the GluA2 gene, Gria2. Mice heterozygous for the ECS mutation (named GluA2+/ECS(G)) had a ~ 20% reduction in GluA2 RNA editing at the Q/R site. We conducted an initial phenotypic analysis of these mice, finding altered current-voltage relations (confirming expression of Ca2+-permeable AMPA receptors at the synapse). Anatomically, we observed a loss of hippocampal CA1 neurons, altered dendritic morphology and reductions in CA1 pyramidal cell spine density. Behaviourally, GluA2+/ECS(G) mice exhibited reduced motor coordination, and learning and memory impairments. Notably, the mice also exhibited both NMDA receptor-independent long-term potentiation (LTP) and vulnerability to NMDA receptor-independent seizures. These NMDA receptor-independent seizures were rescued by the Ca2+-permeable AMPA receptor antagonist IEM-1460. In summary, unedited GluA2(Q) may have the potential to drive NMDA receptor-independent processes in brain function and disease. Our study provides an initial characterisation of a new mouse model for studying the role of unedited GluA2(Q) in synaptic and dendritic spine plasticity in disorders where unedited GluA2(Q), synapse loss, neurodegeneration, behavioural impairments and/or seizures are observed, such as ischemia, seizures and epilepsy, Huntington's disease, amyotrophic lateral sclerosis, astrocytoma, cocaine seeking behaviour and Alzheimer's disease.


Assuntos
Região CA1 Hipocampal/patologia , Espinhas Dendríticas/metabolismo , Aprendizagem , Transtornos da Memória/complicações , Neurônios/patologia , Edição de RNA , Receptores de AMPA/metabolismo , Convulsões/complicações , Animais , Sequência de Bases , Peso Corporal , Região CA1 Hipocampal/fisiopatologia , Medo , Potenciação de Longa Duração , Transtornos da Memória/fisiopatologia , Camundongos , Atividade Motora , Plasticidade Neuronal , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsões/fisiopatologia , Análise de Sobrevida , Transmissão Sináptica
8.
Front Neurosci ; 12: 243, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29719497

RESUMO

The amount of regulatory RNA encoded in the genome and the extent of RNA editing by the post-transcriptional deamination of adenosine to inosine (A-I) have increased with developmental complexity and may be an important factor in the cognitive evolution of animals. The newest member of the A-I editing family of ADAR proteins, the vertebrate-specific ADAR3, is highly expressed in the brain, but its functional significance is unknown. In vitro studies have suggested that ADAR3 acts as a negative regulator of A-I RNA editing but the scope and underlying mechanisms are also unknown. Meta-analysis of published data indicates that mouse Adar3 expression is highest in the hippocampus, thalamus, amygdala, and olfactory region. Consistent with this, we show that mice lacking exon 3 of Adar3 (which encodes two double stranded RNA binding domains) have increased levels of anxiety and deficits in hippocampus-dependent short- and long-term memory formation. RNA sequencing revealed a dysregulation of genes involved in synaptic function in the hippocampi of Adar3-deficient mice. We also show that ADAR3 transiently translocates from the cytoplasm to the nucleus upon KCl-mediated activation in SH-SY5Y cells. These results indicate that ADAR3 contributes to cognitive processes in mammals.

9.
Front Mol Neurosci ; 10: 306, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018327

RESUMO

Hypoxic-ischemic (HI) encephalopathy occurs in approximately 6 per 1000 term newborns leading to devastating neurological consequences, such as cerebral palsy and seizures. Maternal smoking is one of the prominent risk factors contributing to HI injury. Mitochondrial integrity plays a critical role in neural injury and repair during HI. We previously showed that maternal cigarette smoke exposure (SE) can reduce brain mitochondrial fission and autophagosome markers in male offspring. This was accompanied by increased brain cell apoptosis (active caspase-3) and DNA fragmentation (TUNEL staining). Here, we aimed to investigate whether maternal SE leads to more severe neurological damage after HI brain injury in male offspring. Female BALB/c mice (8 weeks) were exposed to cigarette smoke prior to mating, during gestation, and lactation. At postnatal day 10, half of the pups from each litter underwent left carotid artery occlusion, followed by exposure to 8% oxygen (92% nitrogen). At postnatal day 40-44, maternal SE reduced grip strength in grip traction and foot fault tests, which were also reduced by HI injury to similar levels regardless of the maternal group. Limb coordination was impaired by maternal SE which was not worsened by HI injury. Maternal SE increased anxiety level in the offspring, which was normalized by HI injury. Apoptosis markers were increased in different brain regions by maternal SE, with the cortex having further increased TUNEL by HI injury, along with increased markers of inflammation and mitophagy. We conclude that maternal SE can worsen HI-induced cellular damage in male offspring well into adolescence.

10.
Semin Immunopathol ; 39(5): 505-516, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28451786

RESUMO

The term cytokine storm has become a popular descriptor of the dramatic harmful consequences of the rapid release of polypeptide mediators, or cytokines, that generate inflammatory responses. This occurs throughout the body in both non-infectious and infectious disease states, including the central nervous system. In infectious disease it has become a useful concept through which to appreciate that most infectious disease is not caused directly by a pathogen, but by an overexuberant innate immune response by the host to its presence. It is less widely known that in addition to these roles in disease pathogenesis these same cytokines are also the basis of innate immunity, and in lower concentrations have many essential physiological roles. Here we update this field, including what can be learned through the history of how these interlinking three aspects of biology and disease came to be appreciated. We argue that understanding cytokine storms in their various degrees of acuteness, severity and persistence is essential in order to grasp the pathophysiology of many diseases, and thus the basis of newer therapeutic approaches to treating them. This particularly applies to the neurodegenerative diseases.


Assuntos
Citocinas/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Citocinas/sangue , Suscetibilidade a Doenças , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunidade Inata , Interleucina-1/metabolismo , Doenças Neurodegenerativas/sangue , Doenças Neurodegenerativas/etiologia , Fator de Necrose Tumoral alfa/metabolismo
11.
J Neuroinflammation ; 13(1): 236, 2016 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-27596607

RESUMO

The basic mechanism of the major neurodegenerative diseases, including neurogenic pain, needs to be agreed upon before rational treatments can be determined, but this knowledge is still in a state of flux. Most have agreed for decades that these disease states, both infectious and non-infectious, share arguments incriminating excitotoxicity induced by excessive extracellular cerebral glutamate. Excess cerebral levels of tumor necrosis factor (TNF) are also documented in the same group of disease states. However, no agreement exists on overarching mechanism for the harmful effects of excess TNF, nor, indeed how extracellular cerebral glutamate reaches toxic levels in these conditions. Here, we link the two, collecting and arguing the evidence that, across the range of neurodegenerative diseases, excessive TNF harms the central nervous system largely through causing extracellular glutamate to accumulate to levels high enough to inhibit synaptic activity or kill neurons and therefore their associated synapses as well. TNF can be predicted from the broader literature to cause this glutamate accumulation not only by increasing glutamate production by enhancing glutaminase, but in addition simultaneously reducing glutamate clearance by inhibiting re-uptake proteins. We also discuss the effects of a TNF receptor biological fusion protein (etanercept) and the indirect anti-TNF agents dithio-thalidomides, nilotinab, and cannabinoids on these neurological conditions. The therapeutic effects of 6-diazo-5-oxo-norleucine, ceptriaxone, and riluzole, agents unrelated to TNF but which either inhibit glutaminase or enhance re-uptake proteins, but do not do both, as would anti-TNF agents, are also discussed in this context. By pointing to excess extracellular glutamate as the target, these arguments greatly strengthen the case, put now for many years, to test appropriately delivered ant-TNF agents to treat neurodegenerative diseases in randomly controlled trials.


Assuntos
Córtex Cerebral/metabolismo , Ácido Glutâmico/toxicidade , Neuralgia , Doenças Neurodegenerativas , Fator de Necrose Tumoral alfa/metabolismo , Animais , Córtex Cerebral/efeitos dos fármacos , Humanos , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo
12.
J Neurochem ; 137(2): 140-1, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27005822

RESUMO

A publication in the Journal of Neurochemistry by Rao et al. (2016) suggests that the overexpression of the calpain inhibitor, calpastatin (CAST) rescues neuron loss and increases survival of the amyotrophic lateral sclerosis (ALS) mouse model, hSOD1G93A. The findings of Rao et al. (2016) provide an insight into the mechanisms that lead to neuronal loss in ALS and suggest a cell loss pathway common to several neurodegenerative disorders that may be therapeutically targeted. Here, we highlight the findings of Rao et al. (2016) and discuss some key considerations required prior to assessing the potential use of calpain inhibitors in the clinic. Read the highlighted article 'Calpastatin inhibits motor neuron death and increases survival in hSOD1(G93A) mice' on page 253.


Assuntos
Proteínas de Ligação ao Cálcio/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Neurônios Motores/efeitos dos fármacos , Superóxido Dismutase/genética , Animais , Humanos
13.
Neural Plast ; 2015: 358263, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26221543

RESUMO

Tumor necrosis factor (TNF) is an ancient and widespread cytokine required in small amounts for much physiological function. Higher concentrations are central to innate immunity, but if unchecked this cytokine orchestrates much chronic and acute disease, both infectious and noninfectious. While being a major proinflammatory cytokine, it also controls homeostasis and plasticity in physiological circumstances. For the last decade or so these principles have been shown to apply to the central nervous system as well as the rest of the body. Nevertheless, whereas this approach has been a major success in treating noncerebral disease, its investigation and potential widespread adoption in chronic neurological conditions has inexplicably stalled since the first open trial almost a decade ago. While neuroscience is closely involved with this approach, clinical neurology appears to be reticent in engaging with what it offers patients. Unfortunately, the basic biology of TNF and its relevance to disease is largely outside the traditions of neurology. The purpose of this review is to facilitate lowering communication barriers between the traditional anatomically based medical specialties through recognition of shared disease mechanisms and thus advance the prospects of a large group of patients with neurodegenerative conditions for whom at present little can be done.


Assuntos
Encéfalo/fisiopatologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/fisiopatologia , Neurologia/tendências , Fator de Necrose Tumoral alfa/fisiologia , Fator de Necrose Tumoral alfa/uso terapêutico , Animais , Humanos , Plasticidade Neuronal
14.
Front Neurosci ; 8: 113, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24904259

RESUMO

Since the 1960's treatments for Parkinson's disease (PD) have traditionally been directed to restore or replace dopamine, with L-Dopa being the gold standard. However, chronic L-Dopa use is associated with debilitating dyskinesias, limiting its effectiveness. This has resulted in extensive efforts to develop new therapies that work in ways other than restoring or replacing dopamine. Here we describe newly emerging non-dopaminergic therapeutic strategies for PD, including drugs targeting adenosine, glutamate, adrenergic, and serotonin receptors, as well as GLP-1 agonists, calcium channel blockers, iron chelators, anti-inflammatories, neurotrophic factors, and gene therapies. We provide a detailed account of their success in animal models and their translation to human clinical trials. We then consider how advances in understanding the mechanisms of PD, genetics, the possibility that PD may consist of multiple disease states, understanding of the etiology of PD in non-dopaminergic regions as well as advances in clinical trial design will be essential for ongoing advances. We conclude that despite the challenges ahead, patients have much cause for optimism that novel therapeutics that offer better disease management and/or which slow disease progression are inevitable.

15.
J Neuroinflammation ; 11: 51, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24655719

RESUMO

The depth, pattern, timing and duration of unconsciousness, including sleep, vary greatly in inflammatory disease, and are regarded as reliable indicators of disease severity. Similarly, these indicators are applicable to the encephalopathies of sepsis, malaria, and trypanosomiasis, and to viral diseases such as influenza and AIDS. They are also applicable to sterile neuroinflammatory states, including Alzheimer's disease, Parkinson's disease, traumatic brain injury, stroke and type-2 diabetes, as well as in iatrogenic brain states following brain irradiation and chemotherapy. Here we make the case that the cycles of unconsciousness that constitute normal sleep, as well as its aberrations, which range from sickness behavior through daytime sleepiness to the coma of inflammatory disease states, have common origins that involve increased inflammatory cytokines and consequent insulin resistance and loss of appetite due to reduction in orexigenic activity. Orexin reduction has broad implications, which are as yet little appreciated in the chronic inflammatory conditions listed, whether they be infectious or sterile in origin. Not only is reduction in orexin levels characterized by loss of appetite, it is associated with inappropriate and excessive sleep and, when dramatic and chronic, leads to coma. Moreover, such reduction is associated with impaired cognition and a reduction in motor control. We propose that advanced understanding and appreciation of the importance of orexin as a key regulator of pathways involved in the maintenance of normal appetite, sleep patterns, cognition, and motor control may afford novel treatment opportunities.


Assuntos
Encefalopatias/complicações , Inflamação/etiologia , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuropeptídeos/metabolismo , Transtornos do Sono-Vigília/etiologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Humanos , Orexinas
16.
Proc Natl Acad Sci U S A ; 110(24): 9938-43, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23676273

RESUMO

Specific brain circuits have been classically linked to dedicated functions. However, compensation following brain damage suggests that these circuits are capable of dynamic adaptation. Such compensation is exemplified by Pavlovian fear conditioning following damage to the dorsal hippocampus (DH). Although the DH normally underlies contextual fear and fear renewal after extinction, both can be learned in the absence of the DH, although the mechanisms and nature of this compensation are currently unknown. Here, we report that recruitment of alternate structures, specifically the infralimbic and prelimbic prefrontal cortices, is required for compensation following damage to the hippocampus. Disconnection of these cortices in DH-compromised animals and immediate early gene induction profiles for amygdala-projecting prefrontal cells revealed that communication and dynamic rebalancing within this prefrontal microcircuit is critical. Additionally, the infralimbic cortex normally plays a role in limiting generalization of contextual fear. These discoveries reveal that plasticity through recruitment of alternate circuits allows the brain to compensate following damage, offering promise for targeted treatment of memory disorders.


Assuntos
Condicionamento Clássico/fisiologia , Hipocampo/fisiopatologia , Aprendizagem/fisiologia , Córtex Pré-Frontal/fisiologia , Amnésia Retrógrada/fisiopatologia , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiologia , Análise de Variância , Animais , Medo/fisiologia , Hipocampo/metabolismo , Hipocampo/patologia , Imuno-Histoquímica , Masculino , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Long-Evans
17.
Pharmacol Rev ; 64(4): 1004-26, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22966039

RESUMO

The evident limitations of the amyloid theory of the pathogenesis of Alzheimer's disease are increasingly putting alternatives in the spotlight. We argue here that a number of independently developing approaches to therapy-including specific and nonspecific anti-tumor necrosis factor (TNF) agents, apolipoprotein E mimetics, leptin, intranasal insulin, the glucagon-like peptide-1 mimetics and glycogen synthase kinase-3 (GSK-3) antagonists-are all part of an interlocking chain of events. All these approaches inform us that inflammation and thence cerebral insulin resistance constitute the pathway on which to focus for a successful clinical outcome in treating this disease. The key link in this chain presently absent is a recognition by Alzheimer's research community of the long-neglected history of TNF induction of insulin resistance. When this is incorporated into the bigger picture, it becomes evident that the interventions we discuss are not competing alternatives but equally valid approaches to correcting different parts of the same pathway to Alzheimer's disease. These treatments can be expected to be at least additive, and conceivably synergistic, in effect. Thus the inflammation, insulin resistance, GSK-3, and mitochondrial dysfunction hypotheses are not opposing ideas but stages of the same fundamental, overarching, pathway of Alzheimer's disease pathogenesis. The insight this provides into progenitor cells, including those involved in adult neurogenesis, is a key part of this approach. This pathway also has therapeutic implications for other circumstances in which brain TNF is pathologically increased, such as stroke, traumatic brain injury, and the infectious disease encephalopathies.


Assuntos
Doença de Alzheimer/metabolismo , Resistência à Insulina , Fator de Necrose Tumoral alfa/metabolismo , Animais , Encéfalo/metabolismo , Humanos , Insulina/metabolismo , Estreptozocina/farmacologia
18.
Front Mol Neurosci ; 5: 34, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22514516

RESUMO

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are comprised of different combinations of GluA1-GluA4 (also known asGluR1-GluR4 and GluR-A to GluR-D) subunits. The GluA2 subunit is subject to RNA editing by the ADAR2 enzyme, which converts a codon for glutamine (Gln; Q), present in the GluA2 gene, to a codon for arginine (Arg; R) found in the mRNA. AMPA receptors are calcium (Ca(2+))-permeable if they contain the unedited GluA2(Q) subunit or if they lack the GluA2 subunit. While most AMPA receptors in the brain contain the edited GluA2(R) subunit and are therefore Ca(2+)-impermeable, recent evidence suggests that Ca(2+)-permeable AMPA receptors are important in synaptic plasticity, learning, and disease. Strong evidence supports the notion that Ca(2+)-permeable AMPA receptors are usually GluA2-lacking AMPA receptors, with little evidence to date for a significant role of unedited GluA2 in normal brain function. However, recent detailed studies suggest that Ca(2+)-permeable AMPA receptors containing unedited GluA2 do in fact occur in neurons and can contribute to excitotoxic cell loss, even where it was previously thought that there was no unedited GluA2.This review provides an update on the role of GluA2 RNA editing in the healthy and diseased brain and summarizes recent insights into the mechanisms that control this process. We suggest that further studies of the role of unedited GluA2 in normal brain function and disease are warranted, and that GluA2 editing should be considered as a possible contributing factor when Ca(2+)-permeable AMPA receptors are observed.

19.
J Alzheimers Dis ; 26(2): 201-5, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21593567

RESUMO

Both tumor necrosis factor (TNF) and leptin are, independently, under investigation as the central mechanism for Alzheimer's disease. The wider literature provides every indication that both mediators are part of the same pathways thought to cause functional loss in this condition. This association, which has not been specifically addressed in the Alzheimer's disease literature, may be a useful link to expedite future study into the pathogenesis of this condition.


Assuntos
Doença de Alzheimer/metabolismo , Leptina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Humanos
20.
Pharmacol Ther ; 128(3): 519-48, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20813131

RESUMO

Certain cytokines, the prototype being the highly pleiotropic TNF, have many homeostatic physiological roles, are involved in innate immunity, and cause inflammation when in excess. These cytokines have long been accepted to have central roles in the pathogenesis of systemic or local non-cerebral disease states, whether acute or chronic, and whether or not caused by infectious agents. Over the last decade they have also been appreciated to be broadly important in brain physiology. As in other organs, excessive levels in brain are harmful, and its physiological complexity leads to correspondingly complex dysfunction. This review summarizes the burgeoning literature on this topic, and how the functions of these molecules, particularly TNF, are influencing the outlook of researchers on the pathophysiology of these diseases. Basic brain physiology is thus informing knowledge of the brain dysfunction that characterizes such apparently diverse states as Alzheimer's disease, trauma (mostly, but not only, to the brain), Parkinson's disease, and severe systemic infectious states, including malaria, sepsis, viral diseases and major depression. The implication is that the anti-cytokine therapies now in use, typically directed at TNF, warrant testing in these diseases in circumstances in which the therapeutic agent enters the cerebrospinal fluid. Routinely administering such drugs to patients exhibiting the neurological changes discussed in this review would simply add another organ system to what is already a very successful strategy in the treatment of inflammatory disease at other sites, such as joints, skin and gut. Clearly, the most relevant research is focussed on Alzheimer's disease, but the principles may also apply to other encephalopathies.


Assuntos
Encefalopatias/fisiopatologia , Encéfalo/fisiopatologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/fisiologia , Encéfalo/imunologia , Encéfalo/metabolismo , Encefalopatias/tratamento farmacológico , Encefalopatias/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Citocinas/fisiologia , Encefalite/tratamento farmacológico , Encefalite/imunologia , Encefalite/fisiopatologia , Humanos , Imunidade Inata , Fator de Necrose Tumoral alfa/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA