Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 10(3): 494-511, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38467800

RESUMO

Pressurized cells with strong walls make up the hydrostatic skeleton of plants. Assembly and expansion of such stressed walls depend on a family of secreted RAPID ALKALINIZATION FACTOR (RALF) peptides, which bind both a membrane receptor complex and wall-localized LEUCINE-RICH REPEAT EXTENSIN (LRXs) in a mutually exclusive way. Here we show that, in root hairs, the RALF22 peptide has a dual structural and signalling role in cell expansion. Together with LRX1, it directs the compaction of charged pectin polymers at the root hair tip into periodic circumferential rings. Free RALF22 induces the formation of a complex with LORELEI-LIKE-GPI-ANCHORED PROTEIN 1 and FERONIA, triggering adaptive cellular responses. These findings show how a peptide simultaneously functions as a structural component organizing cell wall architecture and as a feedback signalling molecule that regulates this process depending on its interaction partners. This mechanism may also underlie wall assembly and expansion in other plant cell types.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Peptídeos/metabolismo , Plantas/metabolismo , Parede Celular/metabolismo , Raízes de Plantas/metabolismo
2.
Science ; 382(6671): 719-725, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37943924

RESUMO

Assembly of cell wall polysaccharides into specific patterns is required for plant growth. A complex of RAPID ALKALINIZATION FACTOR 4 (RALF4) and its cell wall-anchored LEUCINE-RICH REPEAT EXTENSIN 8 (LRX8)-interacting protein is crucial for cell wall integrity during pollen tube growth, but its molecular connection with the cell wall is unknown. Here, we show that LRX8-RALF4 complexes adopt a heterotetrametric configuration in vivo, displaying a dendritic distribution. The LRX8-RALF4 complex specifically interacts with demethylesterified pectins in a charge-dependent manner through RALF4's polycationic surface. The LRX8-RALF4-pectin interaction exerts a condensing effect, patterning the cell wall's polymers into a reticulated network essential for wall integrity and expansion. Our work uncovers a dual structural and signaling role for RALF4 in pollen tube growth and in the assembly of complex extracellular polymers.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Parede Celular , Pectinas , Tubo Polínico , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Pectinas/química , Pectinas/metabolismo , Peptídeos/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo
3.
Cells ; 10(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34359847

RESUMO

Auxin plays a dual role in growth regulation and, depending on the tissue and concentration of the hormone, it can either promote or inhibit division and expansion processes in plants. Recent studies have revealed that, beyond transcriptional reprogramming, alternative auxin-controlled mechanisms regulate root growth. Here, we explored the impact of different concentrations of the synthetic auxin NAA that establish growth-promoting and -repressing conditions on the root tip proteome and phosphoproteome, generating a unique resource. From the phosphoproteome data, we pinpointed (novel) growth regulators, such as the RALF34-THE1 module. Our results, together with previously published studies, suggest that auxin, H+-ATPases, cell wall modifications and cell wall sensing receptor-like kinases are tightly embedded in a pathway regulating cell elongation. Furthermore, our study assigned a novel role to MKK2 as a regulator of primary root growth and a (potential) regulator of auxin biosynthesis and signalling, and suggests the importance of the MKK2 Thr31 phosphorylation site for growth regulation in the Arabidopsis root tip.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Hormônios Peptídicos/genética , Fosfoproteínas/genética , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/genética , Proteínas Quinases/genética , Receptores de Superfície Celular/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ácidos Indolacéticos/farmacologia , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Ácidos Naftalenoacéticos/síntese química , Ácidos Naftalenoacéticos/farmacologia , Hormônios Peptídicos/metabolismo , Fosfoproteínas/classificação , Fosfoproteínas/metabolismo , Fosforilação , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/classificação , Proteoma/genética , Proteoma/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
4.
Environ Toxicol Chem ; 37(1): 145-159, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28786503

RESUMO

The toxicity effects of zinc (Zn), copper (Cu), and cadmium (Cd), both as single metals and in combination, were examined in the nematode Caenorhabditis elegans. Metal effects on lethality were analyzed in a time-dependent manner using different concentrations in K-medium. To investigate the effects on locomotion and chemosensation, lethal concentration at 20% (LC20) values were used. The results showed that Cu toxicity was higher compared with Cd and Zn, resulting in higher mortality rates and a more reduced locomotion. Lethality increased over time for all metals. When Cd was added to Cu, and vice versa, significant increases in toxicity were noted. Different interaction effects were observed for the mixtures ZnCd, ZnCu, CuCd, and ZnCuCd. Zinc seemed to have a neutral toxic effect on Cd, while in combination with Cu, a similar additive effect was seen as for the CuCd combination. Binary and tertiary metal mixtures caused a strong decrease in locomotion, except for the ZnCd combination, where Zn seemed to have a neutral effect. After LC2024 h exposure, reduced crawling speed (except for Zn) and reduced thrashing behavior (except for Zn and the ZnCd mixture) were observed. Almost no significant effects were observed on chemosensation. Because the same trend of mixture effects was noted in locomotion and in lethality tests, locomotion can probably be considered a sensitive endpoint for metal toxicities. Environ Toxicol Chem 2018;37:145-159. © 2017 SETAC.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cádmio/toxicidade , Caenorhabditis elegans/efeitos dos fármacos , Cobre/toxicidade , Zinco/toxicidade , Animais , Quimiotaxia/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Tempo de Reação , Análise de Regressão , Sensação/efeitos dos fármacos
5.
New Phytol ; 194(4): 895-909, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22404712

RESUMO

The vegetative development of plants is strongly dependent on the action of phytohormones. For over a century, the effects of ethylene on plants have been studied, illustrating the profound impact of this gaseous hormone on plant growth, development and stress responses. Ethylene signaling is under tight self-control at various levels. Feedback regulation occurs on both biosynthesis and signaling. For its role in developmental processes, ethylene has a close and reciprocal relation with auxin, another major determinant of plant architecture. Here, we discuss, in view of novel findings mainly in the reference plant Arabidopsis, how ethylene is distributed and perceived throughout the plant at the organ, tissue and cellular levels, and reflect on how plants benefit from the complex interaction of ethylene and auxin, determining their shape. Furthermore, we elaborate on the implications of recent discoveries on the control of ethylene signaling.


Assuntos
Arabidopsis/fisiologia , Etilenos/metabolismo , Transdução de Sinais , Retroalimentação Fisiológica , Ácidos Indolacéticos/metabolismo
6.
Plant Physiol ; 155(4): 2049-55, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21282405

RESUMO

In Arabidopsis (Arabidopsis thaliana; Columbia-0) roots, the so-called zone of cell elongation comprises two clearly different domains: the transition zone, a postmeristematic region (approximately 200-450 µm proximal of the root tip) with a low rate of elongation, and a fast elongation zone, the adjacent proximal region (450 µm away from the root tip up to the first root hair) with a high rate of elongation. In this study, the surface pH was measured in both zones using the microelectrode ion flux estimation technique. The surface pH is highest in the apical part of the transition zone and is lowest at the basal part of the fast elongation zone. Fast cell elongation is inhibited within minutes by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid; concomitantly, apoplastic alkalinization occurs in the affected root zone. Fusicoccin, an activator of the plasma membrane H(+)-ATPase, can partially rescue this inhibition of cell elongation, whereas the inhibitor N,N'-dicyclohexylcarbodiimide does not further reduce the maximal cell length. Microelectrode ion flux estimation experiments with auxin mutants lead to the final conclusion that control of the activity state of plasma membrane H(+)-ATPases is one of the mechanisms by which ethylene, via auxin, affects the final cell length in the root.


Assuntos
Aminoácidos Cíclicos/metabolismo , Arabidopsis/citologia , Crescimento Celular , Raízes de Plantas/citologia , Arabidopsis/metabolismo , Dicicloexilcarbodi-Imida/farmacologia , Glicosídeos/farmacologia , Concentração de Íons de Hidrogênio , Microeletrodos , Raízes de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo
7.
Plant Signal Behav ; 6(1): 83-5, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21301216

RESUMO

Upon chronic UV treatment pavement cell expansion in Arabidopsis leaves is reduced, implying alterations in symplastic and apoplastic properties of the epidermal cells. In this study, the effect of UV radiation on microtubule patterning is analysed, as microtubules are thought to serve as guiding rails for the cellulose synthase complexes depositing cellulose microfibrils. Together with hemicelluloses, these microfibrils are regarded as the load-bearing components of the cell wall. Leaves of transgenic plants with fluorescently tagged microtubules (GFP-TUA6) were as responsive to UV as wild type plants. Despite the UV-induced reduction in cell elongation, confocal microscopy revealed that cellular microtubule arrangements were seemingly not affected by the UV treatments. This indicates an unaltered deposition of cellulose microfibrils in the presence of UV radiation. Therefore, we surmise that the reduction in cell expansion in UV-treated leaves is most probably due to changes in cell wall loosening and/or turgor pressure.   


Assuntos
Arabidopsis/citologia , Arabidopsis/efeitos da radiação , Microtúbulos/metabolismo , Microtúbulos/efeitos da radiação , Epiderme Vegetal/citologia , Folhas de Planta/citologia , Raios Ultravioleta , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proliferação de Células/efeitos da radiação , Proteínas de Fluorescência Verde/metabolismo , Epiderme Vegetal/metabolismo , Epiderme Vegetal/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação
8.
J Exp Bot ; 61(15): 4339-49, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20702567

RESUMO

Plants have evolved a broad spectrum of mechanisms to ensure survival under changing and suboptimal environmental conditions. Alterations of plant architecture are commonly observed following exposure to abiotic stressors. The mechanisms behind these environmentally controlled morphogenic traits are, however, poorly understood. In this report, the effects of a low dose of chronic ultraviolet (UV) radiation on leaf development are detailed. Arabidopsis rosette leaves exposed for 7, 12, or 19 d to supplemental UV radiation expanded less compared with non-UV controls. The UV-mediated decrease in leaf expansion is associated with a decrease in adaxial pavement cell expansion. Elevated UV does not affect the number and shape of adaxial pavement cells, nor the stomatal index. Cell expansion in young Arabidopsis leaves is asynchronous along a top-to-base gradient whereas, later in development, cells localized at both the proximal and distal half expand synchronously. The prominent, UV-mediated inhibition of cell expansion in young leaves comprises effects on the early asynchronous growing stage. Subsequent cell expansion during the synchronous phase cannot nullify the UV impact established during the asynchronous phase. The developmental stage of the leaf at the onset of UV treatment determines whether UV alters cell expansion during the synchronous and/or asynchronous stage. The effect of UV radiation on adaxial epidermal cell size appears permanent, whereas leaf shape is transiently altered with a reduced length/width ratio in young leaves. The data show that UV-altered morphogenesis is a temporal- and spatial-dependent process, implying that common single time point or single leaf zone analyses are inadequate.


Assuntos
Arabidopsis/citologia , Arabidopsis/efeitos da radiação , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos da radiação , Folhas de Planta/citologia , Folhas de Planta/efeitos da radiação , Raios Ultravioleta , Contagem de Células , Polaridade Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Forma Celular/efeitos da radiação , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Estômatos de Plantas/citologia , Estômatos de Plantas/efeitos da radiação , Fatores de Tempo
9.
Vet Microbiol ; 130(3-4): 285-97, 2008 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-18187272

RESUMO

Although poultry meat is now recognized as the main source of Campylobacter jejuni gastroenteritis, little is known about the strategy used by the bacterium to colonize the chicken intestinal tract. In this study, the mechanism of C. jejuni colonization in chickens was studied using four human and four poultry isolates of C. jejuni. The C. jejuni strains were able to invade chicken primary cecal epithelial crypt cells in a predominantly microtubule-dependent way (five out of eight strains). Invasion of cecal epithelial cells was not accompanied by necrosis or apoptosis in the cell cultures, nor by intestinal inflammation in a cecal loop model. C. jejuni from human origin displayed a similar invasive profile compared to the poultry isolates. Invasiveness of the strains in vitro correlated with the magnitude of spleen colonization in C. jejuni inoculated chicks. The C. jejuni bacteria that invaded the epithelial cells were not able to proliferate intracellularly, but quickly evaded from the cells. In contrast, the C. jejuni strains were capable of replication in chicken intestinal mucus. These findings suggest a novel colonization mechanism by escaping rapid mucosal clearance through short-term epithelial invasion and evasion, combined with fast replication in the mucus.


Assuntos
Infecções por Campylobacter/veterinária , Campylobacter jejuni/fisiologia , Ceco/microbiologia , Galinhas , Doenças das Aves Domésticas/microbiologia , Animais , Aderência Bacteriana/fisiologia , Infecções por Campylobacter/microbiologia , Portador Sadio , Ceco/citologia , Células Cultivadas , Células Epiteliais/microbiologia , Fibroblastos/microbiologia , Mucosa Intestinal/citologia , Microtúbulos/fisiologia , Organismos Livres de Patógenos Específicos
10.
Plant Cell Rep ; 26(11): 1961-5, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17637995

RESUMO

Agroinfiltration is employed as a fast way to directly create marker-free transgenic tobacco plants. As an example for the efficiency of the method, Agrobacterium cells harboring a marker-free vector coding for beta-glucuronidase (GUS) were infiltrated into the leaf discs of Nicotiana tabacum, which were then used as explants for marker-free plant regeneration by tissue culture. Through GUS staining, a large number of small calli were shown to be stably transformed on the treated leaf discs at 17 days after agroinfiltration. Most importantly, after continuous culture of the leaf discs until shoot regeneration, about 15% of the regenerants were proven to be transformants by polymerase chain reaction (PCR) analysis.


Assuntos
Nicotiana/genética , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas/fisiologia , Agrobacterium tumefaciens/genética , Vetores Genéticos , Glucuronidase/genética , Glucuronidase/metabolismo , Folhas de Planta/citologia , Plantas Geneticamente Modificadas/citologia , Técnicas de Cultura de Tecidos , Nicotiana/fisiologia
11.
J Exp Bot ; 57(12): 2909-22, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16873447

RESUMO

A tissue print followed by a xyloglucan endotransglycosylase assay revealed that XET activity is present at sites of cell elongation in both roots and shoots of the lycopodiophyte Selaginella kraussiana. This paper provides the first report and analysis of a xyloglucan endotransglycosylase/hydrolase (XTH) cDNA sequence, isolated from a club moss. In silico analysis of the deduced amino acid sequence revealed a strong conservation of the XET-domain described in higher plants. The catalytic site (DEIDLEFLG) varies in only one amino acid compared with the consensus sequence and was shown to be functional after recombinant expression of Sk-XTH1 in Pichia pastoris. Sk-XTH1 displays xyloglucan endotransglycosylase activity over a broad pH (4.5-7.5) and temperature range (4-30 degrees C), but it shows no hydrolase activity. The catalytic site is followed by a consensus sequence for N-linked glycosylation. Four terminal cysteines were shown to stabilize a putative XET-C terminal extension region, which includes conserved amino acids, involved in the recognition and binding of the substrates. The N-linked sugar interactions as well as the disulphide bridges were shown to be necessary to perform XET activity. The presence of a highly conserved XTH sequence and function in a microphyllophyte suggests that XTHs were present before the divergence of lycopodiophytes and euphyllophytes. It also points to a possible key role for XTHs in the production of a cell wall that allowed the further evolution of land plants.


Assuntos
Evolução Molecular , Glicosiltransferases/química , Selaginellaceae/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Biologia Computacional , Sequência Consenso , Sequência Conservada , DNA Complementar/química , Glicosilação , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Dados de Sequência Molecular , Organismos Geneticamente Modificados/metabolismo , Filogenia , Pichia/genética , Proteínas Recombinantes de Fusão/análise , Selaginellaceae/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Análise de Sequência de Proteína
12.
J Exp Bot ; 56(412): 673-83, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15642717

RESUMO

Sulphorhodamine-labelled oligosaccharides of xyloglucan are incorporated into the cell wall of Arabidopsis and tobacco roots, and of cultured Nicotiana tabacum cells by the transglucosylase (XET) action of XTHs. In the cell wall of diffusely growing cells, the subcellular pattern of XET action revealed a 'fibrillar' pattern, different from the xyloglucan localization. The fibrillar fluorescence pattern had no net orientation in spherical cultured cells. It changed to transverse to the long axis when the cells started to elongate, a feature mirroring the rearrangements of cortical microtubules and the accompanying cellulose deposition. Interference with the polymerization of microtubules and with cellulose deposition inhibited this strong and 'fibrillar'-organized XET-action, whereas interference with actin-polymerization only decreased the intensity of enzyme action. Epidermal cells of a mutant with reduced cellulose synthesis also had low XET action. Root hairs (tip-growing cells) exhibited high XET-action over all their length, but lacked the specific parallel pattern. In both diffuse- and tip-growing cell types extraction of the incorporated fluorescent xyloglucans by a xyloglucan-specific endoglucanase reduced the fluorescence, but the 'fibrillar' appearance in diffuse growing cells was not eliminated. These results show that XTHs act on the xyloglucans attached to cellulose microfibrils. After incorporation of the fluorescent oligosaccharides, the xyloglucans decorate the cellulose microfibrils and become inaccessible to hydrolytic enzymes.


Assuntos
Arabidopsis/enzimologia , Glicosiltransferases/metabolismo , Microfibrilas/fisiologia , Nicotiana/enzimologia , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/ultraestrutura , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Tamanho Celular , Parede Celular/efeitos dos fármacos , Parede Celular/fisiologia , Dinitrobenzenos/farmacologia , Glucanos/metabolismo , Nitrilas/farmacologia , Raízes de Plantas/enzimologia , Sulfanilamidas/farmacologia , Tiazóis/farmacologia , Tiazolidinas , Nicotiana/citologia , Nicotiana/efeitos dos fármacos , Nicotiana/ultraestrutura
13.
Biochem Pharmacol ; 67(8): 1489-98, 2004 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15041466

RESUMO

Cyclic AMP-dependent differentiation of rat C6 glioma cells into an astrocyte type II is characterized by inhibition of cell growth and induction of glial fibrillary acidic protein (GFAP) synthesis. Activation of the P2Y(12) receptor with 2-methylthioadenosine-5'-diphosphate inhibited beta-adrenergic receptor-induced differentiation. The selective P2Y(12) receptor antagonist N(6)-(2-methylthioethyl)-2-(3,3,3-trifluoropropylthio)-beta,gamma-dichloromethylene ATP abolished the receptor-mediated effect on differentiation. In contrast non-selective antagonists of P2Y receptors did not revert the inhibiting effect of the P2Y(12) receptor on differentiation. Reactive blue 2 (RB2), a potent P2Y(12) receptor antagonist, completely inhibited the synthesis of GFAP, while the P2Y receptor antagonists suramin and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid were less efficient. However, although P2Y receptor antagonists inhibited GFAP synthesis to a different extent they were unable to relieve the growth inhibition that accompanied induction of differentiation, whereas stimulation of the P2Y(12) receptor with 2-methylthioadenosine-5'-diphosphate inhibited GFAP expression and restored cell proliferation. Assay of the activity of phosphatidylinositol 3-kinase (PI 3-K), an enzyme required for GFAP expression [J. Neurochem. 76 (2001) 610], showed that RB2 inhibited this enzyme after cellular uptake, while suramin and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid inhibited PI 3-K to a lesser extent. The intracellular concentration of RB2 increased in time and attained the ic(50) for PI 3-K inhibition (4microM) after 40-min incubation with 50microM RB2. In conclusion, cAMP-induced differentiation in C6 cells is inhibited by activation of the P2Y(12) receptor. In addition, synthesis of GFAP is also inhibited by cellular uptake of non-selective nucleotide receptor antagonists that inhibit PI 3-K, a kinase required for the cAMP-dependent induction of differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , AMP Cíclico/fisiologia , Proteínas de Membrana/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Purinérgicos P2/metabolismo , Triazinas/farmacologia , Animais , Glioma , Inibidores da Síntese de Proteínas/farmacologia , Ratos , Receptores Purinérgicos P2Y12 , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA