RESUMO
PURPOSE: The aim was to study the potential for an online fully automated daily adaptive radiotherapy (RT) workflow for bladder cancer, employing a focal boost and fiducial markers. The study focused on comparing the geometric and dosimetric aspects between the simulated automated online adaptive RT (oART) workflow and the clinically performed workflow. METHODS: Seventeen patients with muscle-invasive bladder cancer were treated with daily Cone Beam CT (CBCT)-guided oART. The bladder and pelvic lymph nodes (CTVelective) received a total dose of 40 Gy in 20 fractions and the tumor bed received an additional simultaneously integrated boost (SIB) of 15 Gy (CTVboost). During the online sessions a CBCT was acquired and used as input for the AI-network to automatically delineate the bladder and rectum, i.e. influencers. These influencers were employed to guide the algorithm utilized in the delineation process of the target. Manual adjustments to the generated contours are common during this clinical workflow prior to plan reoptimization and RT delivery. To study the potential for an online fully automated workflow, the oART workflow was repeated in a simulation environment without manual adjustments. A comparison was made between the clinical and automatic contours and between the treatment plans optimized on these clinical (Dclin) and automatic contours (Dauto). RESULTS: The bladder and rectum delineated by the AI-network differed from the clinical contours with a median Dice Similarity Coefficient of 0.99 and 0.92, a Mean Distance to Agreement of 1.9 mm and 1.3 mm and a relative volume of 100% and 95%, respectively. For the CTVboost these differences were larger, namely 0.71, 7 mm and 78%. For the CTVboost the median target coverage was 0.42% lower for Dauto compared to Dclin. For CTVelective this difference was 0.03%. The target coverage of Dauto met the clinical requirement of the CTV-coverage in 65% of the sessions for CTVboost and 95% of the sessions for the CTVelective. CONCLUSIONS: While an online fully automated daily adaptive RT workflow shows promise for bladder treatment, its complexity becomes apparent when incorporating a focal boost, necessitating manual checks to prevent potential underdosage of the target.
Assuntos
Tomografia Computadorizada de Feixe Cônico , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Neoplasias da Bexiga Urinária , Fluxo de Trabalho , Humanos , Neoplasias da Bexiga Urinária/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Radioterapia de Intensidade Modulada/métodos , Órgãos em Risco/efeitos da radiação , Masculino , Radioterapia Guiada por Imagem/métodos , Feminino , Idoso , Algoritmos , Pessoa de Meia-Idade , Marcadores Fiduciais , Idoso de 80 Anos ou mais , AutomaçãoRESUMO
Bladder radiotherapy is challenging due to daily anatomical variations and unpredictable bladder filling, particularly affecting tumors in the cranial part. Conventional radiotherapy requires large planning target volume margins to manage these uncertainties, but this can expose healthy tissue to high radiation doses, increasing the risk of acute and late toxicity. Our aim was to study the potential to limit high-dose exposure to healthy tissue by comparing daily online adaptive radiotherapy (oART) with conventional, non-adaptive radiotherapy (non-ART). The comparison was performed on a bladder cancer patient treated with a simultaneous integrated boost while having a challenging tumor location in the cranial part of the bladder. Liquid fiducial markers aided during the localization of the tumor bed to deliver this focal boost. The dose distribution of oART fractions performed in the clinic was compared with simulated non-ART fractions on the post-treatment cone-beam computed tomography (CBCT). The results showed that while maintaining target coverage of the bladder and gross tumor volume in 100% of the fractions for both workflows, the high dose exposure to organs-at-risk was lower for oART. The small bowel received statistically significantly (p ≤ 0.05) less dose with oART compared to non-ART, with a median volume difference of 20 cm3 receiving 95% of the prescribed dose (55 Gy). The total volume of tissue outside the target receiving 95% of the prescribed dose was also smaller for oART compared to non-ART (p ≤ 0.05). The follow-up of two years showed that the patient had no long-term toxicity effects. Therefore, CBCT-guided oART has been shown to offer a conformal treatment for a challenging patient and can provide a clear advantage in the treatment of bladder cancer.
RESUMO
PURPOSE: The aim was to assess the feasibility of online adaptive radiotherapy (oART) for bladder cancer using a focal boost by focusing on the quality of the online treatment plan and automatic target delineation, duration of the workflow and performance in the presence of fiducial markers for tumor bed localization. METHODS: Fifteen patients with muscle invasive bladder cancer received daily oART with Cone Beam CT (CBCT), artificial intelligence (AI)-assisted automatic delineation of the daily anatomy and online plan reoptimization. The bladder and pelvic lymph nodes received a total dose of 40 Gy in 20 fractions, the tumor received an additional simultaneously integrated boost (SIB) of 15 Gy. The dose distribution of the reference plan was calculated for the daily anatomy, i.e. the scheduled plan. Simultaneously, a reoptimization of the plan was performed i.e. the adaptive plan. The target coverage and V95% outside the target were evaluated for both plans. The need for manual adjustments of the GTV delineation, the duration of the workflow and the influence of fiducial markers were assessed. RESULTS: All 300 adaptive plans met the requirement of the CTV-coverage V95%≥98% for both the boost (55 Gy) and elective volume (40 Gy). For the scheduled plans the CTV-coverage was 53.5% and 98.5%, respectively. Significantly less tissue outside the targets received 55 Gy in case of the adaptive plans as compared to the scheduled plans. Manual corrections of the GTV were performed in 67% of the sessions. In 96% of these corrections the GTV was enlarged and resulted in a median improvement of 1% for the target coverage. The median on-couch time was 22 min. A third of the session time consisted of reoptimization of the treatment plan. Fiducial markers were visible on the CBCTs and aided the tumor localization. CONCLUSIONS: AI-driven CBCT-guided oART aided by fiducial markers is feasible for bladder cancer radiotherapy treatment including a SIB. The quality of the adaptive plans met the clinical requirements and fiducial markers were visible enabling consistent daily tumor localization. Improved automatic delineation to lower the need for manual corrections and faster reoptimization would result in shorter session time.
Assuntos
Radioterapia Conformacional , Radioterapia Guiada por Imagem , Radioterapia de Intensidade Modulada , Neoplasias da Bexiga Urinária , Humanos , Marcadores Fiduciais , Planejamento da Radioterapia Assistida por Computador/métodos , Inteligência Artificial , Neoplasias da Bexiga Urinária/radioterapia , Neoplasias da Bexiga Urinária/patologia , Radioterapia Conformacional/métodos , Dosagem Radioterapêutica , Radioterapia Guiada por Imagem/métodos , Radioterapia de Intensidade Modulada/métodosRESUMO
BACKGROUND AND PURPOSE: In patients with recurrent ventricular tachycardia (VT), STereotactic Arrhythmia Radioablation (STAR) shows promising results. The STOPSTORM.eu consortium was established to investigate and harmonise STAR treatment in Europe. The primary goals of this benchmark study were to standardise contouring of organs at risk (OAR) for STAR, including detailed substructures of the heart, and accredit each participating centre. MATERIALS AND METHODS: Centres within the STOPSTORM.eu consortium were asked to delineate 31 OAR in three STAR cases. Delineation was reviewed by the consortium expert panel and after a dedicated workshop feedback and accreditation was provided to all participants. Further quantitative analysis was performed by calculating DICE similarity coefficients (DSC), median distance to agreement (MDA), and 95th percentile distance to agreement (HD95). RESULTS: Twenty centres participated in this study. Based on DSC, MDA and HD95, the delineations of well-known OAR in radiotherapy were similar, such as lungs (median DSC = 0.96, median MDA = 0.1 mm and median HD95 = 1.1 mm) and aorta (median DSC = 0.90, median MDA = 0.1 mm and median HD95 = 1.5 mm). Some centres did not include the gastro-oesophageal junction, leading to differences in stomach and oesophagus delineations. For cardiac substructures, such as chambers (median DSC = 0.83, median MDA = 0.2 mm and median HD95 = 0.5 mm), valves (median DSC = 0.16, median MDA = 4.6 mm and median HD95 = 16.0 mm), coronary arteries (median DSC = 0.4, median MDA = 0.7 mm and median HD95 = 8.3 mm) and the sinoatrial and atrioventricular nodes (median DSC = 0.29, median MDA = 4.4 mm and median HD95 = 11.4 mm), deviations between centres occurred more frequently. After the dedicated workshop all centres were accredited and contouring consensus guidelines for STAR were established. CONCLUSION: This STOPSTORM multi-centre critical structure contouring benchmark study showed high agreement for standard radiotherapy OAR. However, for cardiac substructures larger disagreement in contouring occurred, which may have significant impact on STAR treatment planning and dosimetry evaluation. To standardize OAR contouring, consensus guidelines for critical structure contouring in STAR were established.
Assuntos
Planejamento da Radioterapia Assistida por Computador , Taquicardia Ventricular , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Benchmarking , Coração , Vasos Coronários , Taquicardia Ventricular/radioterapia , Taquicardia Ventricular/cirurgiaRESUMO
BACKGROUND: Stereotactic arrhythmia radioablation (STAR) appears to be beneficial in selected patients with therapy-refractory ventricular tachycardia (VT). However, high-dose radiotherapy used for STAR-treatment may affect functioning of the patients' implantable cardioverter defibrillator (ICD) by direct effects of radiation on ICD components or cardiac tissue. Currently, the effect of STAR on ICD functioning remains unknown. METHODS: A retrospective pre-post multicenter study evaluating ICD functioning in the 12-month before and after STAR was performed. Patients with (non)ischemic cardiomyopathies with therapy-refractory VT and ICD who underwent STAR were included and the occurrence of ICD-related adverse events was collected. Evaluated ICD parameters included sensing, capture threshold and impedance. A linear mixed-effects model was used to investigate the association between STAR, radiotherapy dose and changes in lead parameters over time. RESULTS: In total, 43 patients (88% male) were included in this study. All patients had an ICD with an additional right atrial lead in 34 (79%) and a ventricular lead in 17 (40%) patients. Median ICD-generator dose was 0.1 Gy and lead tip dose ranged from 0-32 Gy. In one patient (2%), a reset occurred during treatment, but otherwise, STAR and radiotherapy dose were not associated with clinically relevant alterations in ICD leads parameters. CONCLUSIONS: STAR treatment did not result in major ICD malfunction. Only one radiotherapy related adverse event occurred during the study follow-up without patient harm. No clinically relevant alterations in ICD functioning were observed after STAR in any of the leads. With the reported doses STAR appears to be safe.
Assuntos
Desfibriladores Implantáveis , Isquemia Miocárdica , Taquicardia Ventricular , Humanos , Masculino , Feminino , Desfibriladores Implantáveis/efeitos adversos , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/terapia , Estudos Retrospectivos , Arritmias Cardíacas/etiologia , Isquemia Miocárdica/etiologia , Resultado do TratamentoRESUMO
AIMS: Stereotactic arrhythmia radiotherapy (STAR) is suggested as potentially effective and safe treatment for patients with therapy-refractory ventricular tachycardia (VT). However, the current prospective knowledge base and experience with STAR is limited. In this study we aimed to prospectively evaluate the efficacy and safety of STAR. METHODS AND RESULTS: The StereoTactic Arrhythmia Radiotherapy in the Netherlands no.1 was a pre-post intervention study to prospectively evaluate efficacy and safety of STAR. In patients with therapy-refractory VT, the pro-arrhythmic region was treated with a 25 Gy single radiotherapy fraction. The main efficacy measure was a reduction in the number of treated VT-episodes by ≥50%, comparing the 12 months before and after treatment (or end of follow-up, excluding a 6-week blanking period). The study was deemed positive when ≥50% of patients would meet this criterion. Safety evaluation included left ventricular ejection fraction, pulmonary function, and adverse events. Six male patients with an ischaemic cardiomyopathy were enrolled, and median age was 73 years (range 54-83). Median left ventricular ejection fraction was 38% (range 24-52). The median planning target volume was 187 mL (range 93-372). Four (67%) patients completed the 12-month follow-up, and two patients died (not STAR related) during follow-up. The main efficacy measure of ≥50% reduction in treated VT-episodes at the end of follow-up was achieved in four patients (67%). The median number of treated VT-episodes was reduced by 87%. No reduction in left ventricular ejection fraction or pulmonary function was observed. No treatment related serious adverse events occurred. CONCLUSIONS: STAR resulted in a ≥ 50% reduction in treated VT-episodes in 4/6 (67%) patients. No reduction in cardiac and pulmonary function nor treatment-related serious adverse events were observed during follow-up. CLINICAL TRIAL REGISTRATION: Netherlands Trial Register-NL7510.
Assuntos
Radiocirurgia , Taquicardia Ventricular , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Coração , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Volume Sistólico , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/radioterapia , Resultado do Tratamento , Função Ventricular EsquerdaRESUMO
BACKGROUND AND PURPOSE: The stomach experiences large volume and shape changes during pre-operative gastric radiotherapy. This study evaluates the dosimetric benefit for organs-at-risk (OARs) of a library of plans (LoP) compared to the traditional single-plan (SP) strategy. MATERIALS AND METHODS: Twelve patients who received SP CBCT-guided pre-operative gastric radiotherapy (45 Gy; 25 fractions) were included. Clinical target volume (CTV) consisted of CTVstomach (i.e., stomach + 10 mm uniform margin minus OARs) and CTVLN (i.e., regional lymph node stations). For LoP, five stomach volumes (approximately equidistant with fixed volumes) were created using a previously developed stomach deformation model (volume = 150-750 mL). Appropriate planning target volume (PTV) margins were calculated for CTVstomach (SP and LoP, separately) and CTVLN. Treatment plans were automatically generated/optimized and the best-fitting library plan was manually selected for each daily CBCT. OARs (i.e., liver, kidneys, heart, spleen, spinal canal) doses were accumulated and dose-volume histogram (DVH) parameters were evaluated. RESULTS: The non-isotropic PTVstomach margins were significantly (p < 0.05) smaller for LoP than SP (median = 13.1 vs 19.8 mm). For each patient, the average PTV was smaller using a LoP (difference range 134-1151 mL). For all OARs except the kidneys, DVH parameters were significantly reduced using a LoP. Differences in mean dose (Dmean) for liver, heart and spleen ranged between -1.8 to 5.7 Gy. For LoP, a benefit of heart Dmean > 4 Gy and spleen Dmean > 2 Gy was found in 4 and 5 patients, respectively. CONCLUSION: A LoP strategy for pre-operative gastric cancer reduced average PTV and reduced OAR dose compared to a SP strategy, thereby potentially reducing risks for radiation-induced toxicities.
Assuntos
Radioterapia de Intensidade Modulada , Neoplasias Gástricas , Humanos , Dosagem Radioterapêutica , Neoplasias Gástricas/radioterapia , Planejamento da Radioterapia Assistida por Computador , Órgãos em RiscoRESUMO
BACKGROUND AND PURPOSE: Standard palliative radiotherapy workflows involve waiting times or multiple clinic visits. We developed and implemented a rapid palliative workflow using diagnostic imaging (dCT) for pre-planning, with subsequent on-couch target and plan adaptation based on a synthetic computed tomography (CT) obtained from cone-beam CT imaging (CBCT). MATERIALS AND METHODS: Patients with painful bone metastases and recent diagnostic imaging were eligible for inclusion in this prospective, ethics-approved study. The workflow consisted of 1) telephone consultation with a radiation oncologist (RO); 2) pre-planning on the dCT using planning templates and mostly intensity-modulated radiotherapy; 3) RO consultation on the day of treatment; 4) CBCT scan with on-couch adaptation of the target and treatment plan; 5) delivery of either scheduled or adapted treatment plan. Primary outcomes were dosimetric data and treatment times; secondary outcome was patient satisfaction. RESULTS: 47 patients were enrolled between December 2021 and October 2022. In all treatments, adapted treatment plans were chosen due to significant improvements in target coverage (PTV/CTV V95%, p-value < 0.005) compared to the original treatment plan calculated on daily anatomy. Most patients were satisfied with the workflow. The average treatment time, including consultation and on-couch adaptive treatment, was 85 minutes. On-couch adaptation took on average 30 min. but was longer in cases where the automated deformable image registration failed to correctly propagate the targets. CONCLUSION: A fast treatment workflow for patients referred for painful bone metastases was implemented successfully using online adaptive radiotherapy, without a dedicated CT simulation. Patients were generally satisfied with the palliative radiotherapy workflow.
Assuntos
Radioterapia Guiada por Imagem , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Estudos Prospectivos , Encaminhamento e Consulta , Telefone , Radioterapia de Intensidade Modulada/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Radioterapia Guiada por Imagem/métodosRESUMO
Purpose: Cardiac radioablation has evolved as a potential treatment modality for therapy-refractory ventricular tachycardia. To standardize cardiac radioablation treatments, promote accurate communication and target identification, and to assess toxicity, robust, and reproducible methods for angulation and cardiac segmentation are paramount. In this study, we developed and evaluated a tool for semiautomated angulation and segmentation according to the American Heart Association 17-segment model. Methods and Materials: The semiautomated angulation and segmentation of the planning-computed tomography (CT) was based on an in-house developed tool requiring placement of only 4 point-markers and a rotation matrix. For angulation, 2 markers defining the cardiac long-axis were placed: at the cardiac apex and at the center of the mitral valve. A rotation matrix was derived that angulates the CT volume, resulting in the cardiac short axis. Segmentation was subsequently performed based on marking the 2 left ventricular hinge points. To evaluate reproducibility, 5 observers independently placed markers in planning CTs of 6 patients. Results: The root mean square of the standard deviation for the angulation and segmentation marker positions were ≤0.5 cm. The 17 segments were subsequently generated and compared between the observers resulting in a median Dice coefficient of 0.8 (interquartile range: 0.70-0.87) and a median of the mean Hausdorff distance of 0.09 cm (interquartile range: 0.05-0.17). The interquartile ranges of Euler angles α and ß, determined by the angulation markers, was less than 3 degrees for all patients except one. For the γ angle, determined by the hinge point markers, the interquartile range was up to 12 degrees. Conclusions: In this study a method for semiautomatic angulation and segmentation of the heart for cardiac radioablation according to the American Heart Association Segmented Model is presented and evaluated. Based on our results we believe that the segmentation is reproducible and that it can be used to promote communication between radiation oncology and cardiology, enables cardiology-oriented targeting and permits focused toxicity evaluations.
RESUMO
PURPOSE: Late radiation toxicity is a major dose-limiting factor in curative cancer radiation therapy. Previous studies identified several risk factors for late radiation toxicity, including both dose-volume factors and genetic predisposition. Herein, we investigated the contribution of genetic predisposition, particularly compared with dose-volume factors, to the risk of late radiation toxicity in patients treated with highly conformal radiation therapy. METHODS AND MATERIALS: We included 179 patients with prostate cancer who underwent treatment with curative external beam radiation therapy between 2009 and 2013. Toxicity was graded according to the Common Terminology Criteria for Adverse Events version 4.0. Transcriptional responsiveness of homologous recombination repair genes and γ-H2AX foci decay ratios (FDRs) were determined in ex vivo irradiated lymphocytes in a previous analysis. Dose-volume parameters were retrieved by delineating the organs at risk (OARs) on CT planning images. Associations between risk factors and grade ≥2 urinary and bowel late radiation toxicities were assessed using univariable and multivariable logistic regression analyses. The analyses were performed using the highest toxicity grade recorded during the follow-up per patient. RESULTS: The median follow-up period was 31 months. One hundred and one patients (56%) developed grade ≥2 late radiation toxicity. Cumulative rates for urinary and bowel grade ≥2 late toxicities were 46% and 17%, respectively. In the multivariable analysis, factors significantly associated with grade ≥2 late toxicity were transurethral resection of the prostate (P = .013), γ-H2AX FDR <3.41 (P = .008), and rectum V70 >11.52% (P = .017). CONCLUSIONS: Our results suggest that impaired DNA double-strand break repair in lymphocytes, as quantified by γ-H2AX FDR, is the most critical determining factor of late radiation toxicity. The limited influence of dose-volume parameters could be due to the use of increasingly conformal techniques, leading to improved dose-volume parameters of the organs at risk.
Assuntos
Neoplasias da Próstata , Lesões por Radiação , Radioterapia Conformacional , Ressecção Transuretral da Próstata , Humanos , Masculino , Estudos Prospectivos , Neoplasias da Próstata/genética , Lesões por Radiação/etiologia , Dosagem Radioterapêutica , Radioterapia Conformacional/efeitos adversos , Radioterapia Conformacional/métodos , Reto , Ressecção Transuretral da Próstata/efeitos adversosRESUMO
BACKGROUND: Online adaptive radiotherapy has the potential to reduce toxicity for patients treated for rectal cancer because smaller planning target volumes (PTV) margins around the entire clinical target volume (CTV) are required. The aim of this study is to describe the first clinical experience of a Conebeam CT (CBCT)-based online adaptive workflow for rectal cancer, evaluating timing of different steps in the workflow, plan quality, target coverage and patient compliance. METHODS: Twelve consecutive patients eligible for 5 × 5 Gy pre-operative radiotherapy were treated on a ring-based linear accelerator with a multidisciplinary team present at the treatment machine for each fraction. The accelerator is operated using an integrated software platform for both treatment planning and delivery. In all directions for all CTVs a PTV margin of 5 mm was used, except for the cranial/caudal borders of the total CTV where a margin of 8 mm was applied. A reference plan was generated based on a single planning CT. After aligning the patient the online adaptive procedure started with acquisition of a CBCT. The planning CT scan was registered to the CBCT using deformable registration and a synthetic CT scan was generated. With the support of artificial intelligence, structure guided deformation and the synthetic CT scan contours were adapted by the system to match the anatomy on the CBCT. If necessary, these contours were adjusted before a new plan was generated. A second and third CBCT were acquired to validate the new plan with respect to CTV coverage just before and after treatment delivery, respectively. Treatment was delivered using volumetric modulated arc treatment (VMAT). All steps in this process were defined and timed. RESULTS: On average the timeslot needed at the treatment machine was 34 min. The process of acquiring a CBCT, evaluating and adjusting the contours, creating the new plan and verifying the CTV on the CBCT scan took on average 20 min. Including delivery and post treatment verification this was 26 min. Manual adjustments of the target volumes were necessary in 50% of fractions. Plan quality, target coverage and patient compliance were excellent. CONCLUSIONS: First clinical experience with CBCT-based online adaptive radiotherapy shows it is feasible for rectal cancer. Trial registration Medical Research Involving Human Subjects Act (WMO) does not apply to this study and was retrospectively approved by the Medical Ethics review Committee of the Academic Medical Center (W21_087 # 21.097; Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, The Netherlands).
Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Terapia Neoadjuvante , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Neoplasias Retais/radioterapia , Idoso , Idoso de 80 Anos ou mais , Inteligência Artificial , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Órgãos em Risco/efeitos da radiação , Prognóstico , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/patologia , Estudos RetrospectivosRESUMO
PURPOSE: Magnetic resonance imaging (MRI) is increasingly used in radiation oncology for target delineation and radiotherapy treatment planning, for example, in patients with gynecological cancers. As a consequence of pelvic radiotherapy, a part of the bowel is irradiated, yielding risk of bowel toxicity. Existing dose-effect models predicting bowel toxicity are inconclusive and bowel motion might be an important confounding factor. The exact motion of the bowel and dosimetric effects of its motion are yet uncharted territories in radiotherapy. In diagnostic radiology methods on the acquisition of dynamic MRI sequences were developed for bowel motility visualization and quantification. Our study aim was to develop an imaging technique based on three-dimensional (3D) cine-MRI to visualize and quantify bowel motion and demonstrate it in a cohort of gynecological cancer patients. METHODS: We developed an MRI acquisition suitable for 3D bowel motion quantification, namely a balanced turbo field echo sequence (TE = 1.39 ms, TR = 2.8 ms), acquiring images in 3.7 s (dynamic) with a 1.25 × 1.25 × 2.5 mm3 resolution, yielding a field of view of 200 × 200 × 125 mm3 . These MRI bowel motion sequences were acquired in 22 gynecological patients. During a 10-min scan, 160 dynamics were acquired. Subsequent dynamics were deformably registered using a B-spline transformation model, resulting in 159 3D deformation vector fields (DVFs) per MRI set. From the 159 DVFs, the average vector length was calculated per voxel to generate bowel motion maps. Quality assurance was performed on all 159 DVFs per MRI, using the Jacobian Determinant and the Harmonic Energy as deformable image registration error metrics. In order to quantify bowel motion, we introduced the concept of cumulative motion-volume histogram (MVH) of the bowel bag volume. Finally, interpatient variation of bowel motion was analyzed using the MVH parameters M10%, M50%, and M90%. The M10%/M50%/M90% represents the minimum bowel motion per frame of 10%/50%/90% of the bowel bag volume. RESULTS: The motion maps resulted in a visualization of areas with small and large movements within the bowel bag. After applying quality assurance, the M10%, M50%, and M90% were 4.4 (range 2.2-7.6) mm, 2.2 (range 0.9-4.1) mm, and 0.5 (range 0.2-1.4) mm per frame, on average over all patients, respectively. CONCLUSION: We have developed a method to visualize and quantify 3D bowel motion with the use of bowel motion specific MRI sequences in 22 gynecological cancer patients. This 3D cine-MRI-based quantification tool and the concept of MVHs can be used in further studies to determine the effect of radiotherapy on bowel motion and to find the relation with dose effects to the small bowel. In addition, the developed technique can be a very interesting application for bowel motility assessment in diagnostic radiology.
Assuntos
Neoplasias , Respiração , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Imagem Cinética por Ressonância MagnéticaRESUMO
OBJECTIVES: Tonsillectomy and adenoidectomy in children are controversial subjects with large regional variation in surgical rates, partly explained by cultural differences and lack of high-quality evidence on indications for surgery. A quality of care cycle was executed on this topic in the Netherlands. The objective of this study was to estimate changes in healthcare utilisation for paediatric tonsil surgery in the Netherlands. METHODS: Population-based data on tonsillectomies and adenoidectomies in children up to age 10 were retrieved retrospectively from Dutch administrative databases between 2005 and 2018. A change point analysis was performed to detect the most pivotal change point in surgical rates. We performed univariate analyses to compare surgical patients' characteristics before and after the pivotalpoint . Impact on healthcare budget and societal costs were estimated using current prices and data from cost-effectiveness analyses. RESULTS: The annual number of adenotonsillectomies reduced by 10 952 procedures (-39%; from 129 per 10 000 children to 87 per 10 000 children) between 2005 and 2018, and the number of adenoidectomies by 14 757 procedures (-49%; from 138 per 10 000 children to 78 per 10 000 children). The most pivotal change point was observed around 2012, accompanied by small changes in patient selection for surgery before and after 2012. An estimated 5.3 million per year was saved on the healthcare budget and 10.4 million per year on societal costs. CONCLUSION: The quality of care cycle resulted in fewer operations, with a concomitant reduction of costs. We suggest that part of these savings be invested in new research to maintain the quality of care cycle.
Assuntos
Adenoidectomia/estatística & dados numéricos , Aceitação pelo Paciente de Cuidados de Saúde/estatística & dados numéricos , Tonsilectomia/estatística & dados numéricos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Países BaixosRESUMO
PURPOSE: Both midposition (MidP) and internal target volume (ITV) strategies can take the respiration-induced target motion into account. This study aimed to compare these 2 strategies in terms of clinical target volume (CTV) coverage and dose to organs at risk (OARs) for esophageal cancer radiation therapy (RT). METHODS AND MATERIALS: Fifteen patients with esophageal cancer were included retrospectively for neoadjuvant RT planning. Per patient, a 10-phase, 4-dimensional (4D) computed tomography (CT) scan (4D-CT) was acquired with CTV and OARs delineated on the 20% phase. The MidP-CT scan was reconstructed based on deformable image registration between the 20% phase and the other 9 phases; thereby, the CTV and OARs delineations were propagated and an ITV was constructed. Both MidP and ITV strategies were used for treatment planning, yielding the planned dose. Next, these plans were applied to the 10-phase 4D-CT to calculate the dose distribution for each phase of the 4D-CT. On the basis of the deformable image registration, these calculated dose distributions were warped and averaged to yield the accumulated 4D dose. Subsequently, we compared, in terms of CTV coverage and dose to OARs, the planned dose with the accumulated 4D dose and the MidP strategy with the ITV strategy. RESULTS: The differences between the planned dose and the accumulated 4D dose were limited and clinically irrelevant. In 14 patients, both MidP and ITV strategies showed V95% > 98% for the CTV. Compared with the ITV strategy, the MidP strategy showed a significant reduction of approximately 10% in the dose-volume histogram parameters for the lungs, heart, and liver (P < .001, Wilcoxon signed-rank test). CONCLUSIONS: Compared with the ITV strategy, the MidP strategy in treatment planning can lead to a reduction of approximately 10% in the dose to OARs, with an adequate CTV coverage for esophageal cancer RT.
Assuntos
Neoplasias Esofágicas/radioterapia , Neoplasias Pulmonares/radioterapia , Radiometria/métodos , Radioterapia/métodos , Idoso , Idoso de 80 Anos ou mais , Feminino , Tomografia Computadorizada Quadridimensional/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Movimento (Física) , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Adjuvante/métodos , Radioterapia de Intensidade Modulada/métodos , Respiração , Estudos RetrospectivosRESUMO
BACKGROUND: While four-dimensional computed tomography (4DCT) is extensively used in adults, reluctance remains to use 4DCT in children. Day-to-day (interfractional) variability and irregular respiration (intrafractional variability) have shown to be limiting factors of 4DCT effectiveness in adults. In order to evaluate 4DCT applicability in children, the purpose of this study is to quantify inter- and intrafractional variability of respiratory motion in children and adults. The pooled analysis enables a solid comparison to reveal if 4DCT application for planning purposes in children could be valid. METHODS/MATERIALS: We retrospectively included 90 patients (45 children and 45 adults), for whom the diaphragm was visible on abdominal/thoracic free-breathing cone beam CTs (480 pediatric, 524 adult CBCTs). For each CBCT, the cranial-caudal position of end-exhale and end-inhale positions of the right diaphragm dome were manually selected in the projection images. The difference in position between both phases defines the amplitude. Cycle time equaled inspiratory plus expiratory time. We analyzed the variability of the inter- and intrafractional respiratory-induced diaphragm motion. RESULTS: Ranges of respiratory motion characteristics were large in both children and adults (amplitude: 4-17 vs 5-24 mm, cycle time 2.1-3.9 vs 2.7-6.5 s). The mean amplitude was slightly smaller in children than in adults (10.7 vs 12.3 mm; P = 0.06). Interfractional amplitude variability was statistically significantly smaller in children than in adults (1.4 vs 2.2 mm; P = 0.00). Mean cycle time was statistically significantly shorter in children (2.9 vs 3.6 s; P = 0.00). Additionally, intrafractional cycle time variability was statistically significantly smaller in children (0.5 vs 0.7 s; P = 0.00). CONCLUSIONS: Overall variability is smaller in children than in adults, indicating that respiratory motion is more regular in children than in adults. This implies that a single pretreatment 4DCT could be a good representation of daily respiratory motion in children and will be at least equally beneficial for planning purposes as it is in adults.
Assuntos
Tomografia Computadorizada Quadridimensional/métodos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Técnicas de Imagem de Sincronização Respiratória/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos , Adulto JovemRESUMO
BACKGROUND: In adults, a single pre-treatment four-dimensional CT (4D-CT) acquisition is often used to account for respiratory-induced target motion during radiotherapy. However, studies have indicated that a 4D-CT is not always representative for respiratory motion. Our aim was to investigate whether respiratory-induced diaphragm motion in children on a single pre-treatment 4DCT can accurately predict respiratory-induced diaphragm motion as observed on cone beam CTs (CBCTs). METHODS: Twelve patients (mean age 14.5 yrs.; range 8.6-17.9 yrs) were retrospectively included based on visibility of the diaphragm on abdominal or thoracic imaging data acquired during free breathing. A 4DCT for planning purposes and daily/weekly CBCTs (total 125; range 4-29 per patient) acquired prior to dose delivery were available. The amplitude, corresponding to the difference in position of the diaphragm in cranial-caudal direction in end-inspiration and end-expiration phases, was extracted from the 4DCT (A4DCT). The amplitude in CBCTs (ACBCT) was defined as displacement between averaged in- and expiration diaphragm positions on corresponding projection images, and the distribution of ACBCT was compared to A4DCT (one-sample t-test, significance level p < 0.05). RESULTS: Over all patients, the mean A4DCT was 10.4 mm and the mean ACBCT 11.6 mm. For 9/12 patients, A4DCT differed significantly (p < 0.05) from ACBCT. Differences > 3 mm were found in 69/125 CBCTs (55%), with A4DCT mostly underestimating ACBCT. For 7/12 patients, diaphragm positions differed significantly from the baseline position. CONCLUSION: Respiratory-induced diaphragm motion determined on 4DCT does not accurately predict the daily respiratory-induced diaphragm motion observed on CBCTs, as the amplitude and baseline position differed statistically significantly in the majority of patients. Regular monitoring of respiratory motion during the treatment course using CBCTs could yield a higher accuracy when a daily adaptation to the actual breathing amplitude takes place.
Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Computadorizada Quadridimensional/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Movimento , Técnicas de Imagem de Sincronização Respiratória/métodos , Adolescente , Criança , Feminino , Humanos , Neoplasias Pulmonares/radioterapia , Masculino , Respiração , Estudos Retrospectivos , Carga TumoralRESUMO
PURPOSE: To investigate the dosimetric effect of variable gas volume in esophageal cancer radiation therapy (RT) and whether a density override (DO) in treatment planning can effectively mitigate this dosimetric effect. MATERIAL AND METHODS: Nine patients with gastrointestinal gas pockets in the planning computed tomography (pCT) were retrospectively included. Per patient, the intensity-modulated RT (IMRT) and volumetric-modulated arc therapy (VMAT) plans associated with no DO, DO = 0.5, and DO = 1 in the gas pockets were made. Initial and follow-up gas volumes were assessed from the pCTs and cone-beam CTs (CBCTs), respectively. Fractional CTs were created based on the pCT and CBCTs to calculate the fractional doses using all six plans. We then investigated for all six plans the correlation between the gas volume difference (relative to initial gas volume) and the dose difference (relative to planned dose). We also calculated and compared the accumulated dose by summing the fractional doses using two strategies: single-plan strategy (i.e. using each of the six plans separately) and plan-selection strategy (i.e. selecting one of the three plans depending on the fractional gas volume for IMRT and VMAT planning separately). RESULTS: The dose difference was approximately linearly correlated to the gas volume difference. Underdoses of >3.5% and overdoses of >7% were found for gas volume decreases >160 mL/330 mL and increases >260 mL/370 mL for IMRT/VMAT planning, respectively. Moreover, for most patients, the single-plan strategy with the use of DO = 0.5 resulted in neither undesired underdose nor much overdose. The plan-selection strategy, however, can always ensure sufficient target coverage and minimize high dose regions to the most extent. CONCLUSIONS: The variation in gas volume during the treatment course can result in clinically undesired underdose or overdose. The DO-based plan-selection strategy can effectively mitigate the gas-induced underdose and minimize the overdose for esophageal cancer RT.
Assuntos
Neoplasias Esofágicas/radioterapia , Esôfago/diagnóstico por imagem , Gases , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Idoso , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/patologia , Esôfago/patologia , Feminino , Humanos , Intestinos/fisiologia , Masculino , Pessoa de Meia-Idade , Radiometria/métodos , Radiometria/estatística & dados numéricos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Radioterapia de Intensidade Modulada/estatística & dados numéricos , Estudos Retrospectivos , Estômago/fisiologia , Tomografia Computadorizada por Raios XRESUMO
BACKGROUND: Interfractional organ position variation might differ for abdominal organs and this could have consequences for defining safety margins. Therefore, the purpose of this study is to quantify interfractional position variations of abdominal organs in children in order to investigate possible correlations between abdominal organs and determine whether position variation is location-dependent. METHODS: For 20 children (2.2-17.8 years), we retrospectively analyzed 113 CBCTs acquired during the treatment course, which were registered to the reference CT to assess interfractional position variation of the liver, spleen, kidneys, and both diaphragm domes. Organ position variation was assessed in three orthogonal directions and relative to the bony anatomy. Diaphragm dome position variation was assessed in the cranial-caudal (CC) direction only. We investigated possible correlations between position variations of the organs (Spearman's correlation test, ρ), and tested if organ position variations in the CC direction are related to the diaphragm dome position variations (linear regression analysis, R2) (both tests: significance level p < 0.05). Differences of variations of systematic (∑) and random errors (σ) between organs were tested (Bonferroni significance level p < 0.004). RESULTS: In all directions, correlations between liver and spleen position variations, and between right and left kidney position variations were weak (ρ ≤ 0.43). In the CC direction, the position variations of the right and left diaphragm domes were significantly, and stronger, correlated with position variations of the liver (R2 = 0.55) and spleen (R2 = 0.63), respectively, compared to the right (R2 = 0.00) and left kidney (R2 = 0.25). Differences in ∑ and σ between all organs were small and insignificant. CONCLUSIONS: No (strong) correlations between interfractional position variations of abdominal organs in children were observed. From present results, we concluded that diaphragm dome position variations could be more representative for superiorly located abdominal (liver, spleen) organ position variations than for inferiorly located (kidneys) organ position variations. Differences of systematic and random errors between abdominal organs were small, suggesting that for margin definitions, there was insufficient evidence of a dependence of organ position variation on anatomical location.