Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 5862, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615873

RESUMO

NLRP3 controls the secretion of inflammatory cytokines IL-1ß/18 and pyroptosis by assembling the inflammasome. Upon coordinated priming and activation stimuli, NLRP3 recruits NEK7 within hetero-oligomers that nucleate ASC and caspase-1 filaments, but the apical molecular mechanisms underlying inflammasome assembly remain elusive. Here we show that NEK7 recruitment to NLRP3 is controlled by the phosphorylation status of NLRP3 S803 located within the interaction surface, in which NLRP3 S803 is phosphorylated upon priming and later dephosphorylated upon activation. Phosphomimetic substitutions of S803 abolish NEK7 recruitment and inflammasome activity in macrophages in vitro and in vivo. In addition, NLRP3-NEK7 binding is also essential for NLRP3 deubiquitination by BRCC3 and subsequently inflammasome assembly, with NLRP3 phosphomimetic mutants showing enhanced ubiquitination and degradation than wildtype NLRP3. Finally, we identify CSNK1A1 as the kinase targeting NLRP3 S803. Our findings thus reveal NLRP3 S803 phosphorylation status as a druggable apical molecular mechanism controlling inflammasome assembly.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/química , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Caseína Quinase II , Caseína Quinase Ialfa , Caspase 1/metabolismo , Citocinas/metabolismo , Enzimas Desubiquitinantes , Células HEK293 , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Quinases Relacionadas a NIMA/metabolismo , Fosforilação , Piroptose , Ubiquitinação
2.
Sci Rep ; 8(1): 1410, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362425

RESUMO

The regulation of Rac1 by HACE1-mediated ubiquitination and proteasomal degradation is emerging as an essential element in the maintenance of cell homeostasis. However, how the E3 ubiquitin ligase activity of HACE1 is regulated remains undetermined. Using a proteomic approach, we identified serine 385 as a target of group-I PAK kinases downstream Rac1 activation by CNF1 toxin from pathogenic E. coli. Moreover, cell treatment with VEGF also promotes Ser-385 phosphorylation of HACE1. We have established in vitro that HACE1 is a direct target of PAK1 kinase activity. Mechanistically, we found that the phospho-mimetic mutant HACE1(S385E), as opposed to HACE1(S385A), displays a lower capacity to ubiquitinate Rac1 in cells. Concomitantly, phosphorylation of Ser-385 plays a pivotal role in controlling the oligomerization state of HACE1. Finally, Ser-385 phosphorylated form of HACE1 localizes in the cytosol away from its target Rac1. Together, our data point to a feedback inhibition of HACE1 ubiquitination activity on Rac1 by group-I PAK kinases.


Assuntos
Serina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Toxinas Bacterianas/farmacologia , Linhagem Celular , Proteínas de Escherichia coli/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Fosforilação , Multimerização Proteica , Proteômica , Ubiquitinação , Fator A de Crescimento do Endotélio Vascular/farmacologia
3.
Cell Rep ; 15(8): 1728-42, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27184844

RESUMO

The mechanisms that tightly control the transcription of host defense genes have not been fully elucidated. We previously identified TFEB as a transcription factor important for host defense, but the mechanisms that regulate TFEB during infection remained unknown. Here, we used C. elegans to discover a pathway that activates TFEB during infection. Gene dkf-1, which encodes a homolog of protein kinase D (PKD), was required for TFEB activation in nematodes infected with Staphylococcus aureus. Conversely, pharmacological activation of PKD was sufficient to activate TFEB. Furthermore, phospholipase C (PLC) gene plc-1 was also required for TFEB activation, downstream of Gαq homolog egl-30 and upstream of dkf-1. Using reverse and chemical genetics, we discovered a similar PLC-PKD-TFEB axis in Salmonella-infected mouse macrophages. In addition, PKCα was required in macrophages. These observations reveal a previously unknown host defense signaling pathway, which has been conserved across one billion years of evolution.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Caenorhabditis elegans/microbiologia , Evolução Molecular , Interações Hospedeiro-Patógeno/imunologia , Proteína Quinase C/metabolismo , Transdução de Sinais , Fosfolipases Tipo C/metabolismo , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Ativação Enzimática , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Viabilidade Microbiana , Proteína Quinase C-alfa/metabolismo , Células RAW 264.7 , Salmonella enterica/fisiologia , Infecções Estafilocócicas/enzimologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/fisiologia
4.
Immunity ; 40(6): 896-909, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24882217

RESUMO

Animal host defense against infection requires the expression of defense genes at the right place and the right time. Understanding such tight control of host defense requires the elucidation of the transcription factors involved. By using an unbiased approach in the model Caenorhabditis elegans, we discovered that HLH-30 (known as TFEB in mammals) is a key transcription factor for host defense. HLH-30 was activated shortly after Staphylococcus aureus infection, and drove the expression of close to 80% of the host response, including antimicrobial and autophagy genes that were essential for host tolerance of infection. TFEB was also rapidly activated in murine macrophages upon S. aureus infection and was required for proper transcriptional induction of several proinflammatory cytokines and chemokines. Thus, our data suggest that TFEB is a previously unappreciated, evolutionarily ancient transcription factor in the host response to infection.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Proteínas de Caenorhabditis elegans/imunologia , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/microbiologia , Infecções Estafilocócicas/imunologia , Animais , Autofagia/genética , Autofagia/imunologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Caenorhabditis elegans/genética , Enterococcus faecalis/imunologia , Imunidade Inata , Macrófagos/imunologia , Camundongos , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Interferência de RNA , RNA Interferente Pequeno , Infecções por Salmonella/imunologia , Salmonella enterica/imunologia , Transdução de Sinais/imunologia , Staphylococcus aureus/imunologia , Ativação Transcricional/genética , Ativação Transcricional/imunologia
5.
Nat Cell Biol ; 15(6): 647-58, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23604321

RESUMO

The lysosomal-autophagic pathway is activated by starvation and plays an important role in both cellular clearance and lipid catabolism. However, the transcriptional regulation of this pathway in response to metabolic cues is uncharacterized. Here we show that the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy, is induced by starvation through an autoregulatory feedback loop and exerts a global transcriptional control on lipid catabolism via Ppargc1α and Ppar1α. Thus, during starvation a transcriptional mechanism links the autophagic pathway to cellular energy metabolism. The conservation of this mechanism in Caenorhabditis elegans suggests a fundamental role for TFEB in the evolution of the adaptive response to food deprivation. Viral delivery of TFEB to the liver prevented weight gain and metabolic syndrome in both diet-induced and genetic mouse models of obesity, suggesting a new therapeutic strategy for disorders of lipid metabolism.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Metabolismo dos Lipídeos , Síndrome Metabólica/metabolismo , Obesidade/metabolismo , Inanição/metabolismo , Animais , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/farmacologia , Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Metabolismo Energético , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Células HeLa , Homeostase , Humanos , Fígado/metabolismo , Lisossomos/genética , Masculino , Síndrome Metabólica/genética , Síndrome Metabólica/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/genética , PPAR alfa/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Inanição/genética , Transativadores/metabolismo , Fatores de Transcrição , Transcrição Gênica , Aumento de Peso
6.
Dev Cell ; 21(5): 959-65, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22036506

RESUMO

Rac1 small GTPase controls essential aspects of cell biology and is a direct target of numerous bacterial virulence factors. The CNF1 toxin of pathogenic Escherichia coli addresses Rac1 to ubiquitin-proteasome system (UPS). We report the essential role of the tumor suppressor HACE1, a HECT-domain containing E3 ubiquitin-ligase, in the targeting of Rac1 to UPS. HACE1 binds preferentially GTP-bound Rac1 and catalyzes its polyubiquitylation. HACE1 expression increases the ubiquitylation of Rac1, when the GTPase is activated by point mutations or by the GEF-domain of Dbl. RNAi-mediated depletion of HACE1 blocks the ubiquitylation of active Rac1 and increases GTP-bound Rac1 cellular levels. HACE1 antagonizes cell isotropic spreading, a hallmark of Rac1 activation, and is required for endothelial cell monolayer invasion by bacteria. Together, these data establish the role of the HACE1 E3 ubiquitin-ligase in controlling Rac1 ubiquitylation and activity.


Assuntos
Biocatálise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Células CHO , Células Cultivadas , Cricetinae , Células HEK293 , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/biossíntese
7.
FEBS J ; 275(2): 386-96, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18093184

RESUMO

UNLABELLED: Ubiquitination and proteasomal degradation have recently emerged as an additional level of regulation of activated forms of Rho GTPases. To characterize this novel regulatory pathway and to gain insight into its biological significance, we studied the ubiquitination of two constitutively activated forms of Rac1, i.e. the mutationally activated Rac1L61, and the tumorigenic splice variant Rac1b, which is defective for several downstream signaling pathways, including JNK activation. Whereas Rac1L61 undergoes polyubiquitination and subsequent proteasomal degradation in HEK293 cells, Rac1b is poorly ubiquitinated and appears to be much more resistant to proteasomal degradation than Rac1L61. Mutational analysis of all lysine residues in Rac1 revealed that the major target site for Rac1 ubiquitination is Lys147, a solvent-accessible residue that has a similar conformation in Rac1b. Like Rac1L61, Rac1b was found to be largely associated with plasma membrane, a known prerequisite for Rac1 ubiquitination. Interestingly, Rac1b ubiquitination could be stimulated by coexpression of Rac1L61, suggesting positive regulation of Rac1 ubiquitination by Rac1 downstream signaling. Indeed, ubiquitination of Rac1L61 is critically dependent on JNK activation. IN CONCLUSION: (a) Rac1b appears to be more stable than Rac1L61 with regard to the ubiquitin-proteasome system, and this may be of importance for the expression and tumorigenic capacity of Rac1b; and (b) ubiquitination of activated Rac1 occurs through a JNK-activated process, which may explain the defective ubiquitination of Rac1b. The JNK-dependent activation of Rac1 ubiquitination would create a regulatory loop allowing the cell to counteract excessive activation of Rac1 GTPase.


Assuntos
Lisina/metabolismo , MAP Quinase Quinase 4/metabolismo , Isoformas de Proteínas/metabolismo , Ubiquitina/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Western Blotting , Linhagem Celular , Ativação Enzimática , Imunofluorescência , Humanos , Isoformas de Proteínas/química , Proteínas rac1 de Ligação ao GTP/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA