Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1358219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529285

RESUMO

African swine fever virus represents a significant reemerging threat to livestock populations, as its incidence and geographic distribution have surged over the past decade in Europe, Asia, and Caribbean, resulting in substantial socio-economic burdens and adverse effects on animal health and welfare. In a previous report, we described the protective properties of our newly thermo-attenuated strain (ASFV-989) in pigs against an experimental infection of its parental Georgia 2007/1 virulent strain. In this new study, our objective was to characterize the molecular mechanisms underlying the attenuation of ASFV-989. We first compared the activation of type I interferon pathway in response to ASFV-989 and Georgia 2007/1 infections, employing both in vivo and in vitro models. Expression of IFN-α was significantly increased in porcine alveolar macrophages infected with ASFV-989 while pigs infected with Georgia 2007/1 showed higher IFN-α than those infected by ASFV-989. We also used a medium-throughput transcriptomic approach to study the expression of viral genes by both strains, and identified several patterns of gene expression. Subsequently, we investigated whether proteins encoded by the eight genes deleted in ASFV-989 contribute to the modulation of the type I interferon signaling pathway. Using different strategies, we showed that MGF505-4R interfered with the induction of IFN-α/ß pathway, likely through interaction with TRAF3. Altogether, our data reveal key differences between ASFV-989 and Georgia 2007/1 in their ability to control IFN-α/ß signaling and provide molecular mechanisms underlying the role of MGF505-4R as a virulence factor.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Interferon Tipo I , Suínos , Animais , Virulência , Macrófagos
2.
Viruses ; 14(2)2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35215776

RESUMO

Bluetongue virus (BTV) is the etiologic agent of a non-contagious arthropod-borne disease transmitted to wild and domestic ruminants. BTV induces a large panel of clinical manifestations ranging from asymptomatic infection to lethal hemorrhagic fever. Despite the fact that BTV has been studied extensively, we still have little understanding of the molecular determinants of BTV virulence. In our report, we have performed a comparative yeast two-hybrid (Y2H) screening approach to search direct cellular targets of the NS4 virulence factor encoded by two different serotypes of BTV: BTV8 and BTV27. This led to identifying Wilms' tumor 1-associated protein (WTAP) as a new interactor of the BTV-NS4. In contrast to BTV8, 1, 4 and 25, NS4 proteins from BTV27 and BTV30 are unable to interact with WTAP. This interaction with WTAP is carried by a peptide of 34 amino acids (NS422-55) within its putative coil-coiled structure. Most importantly, we showed that binding to WTAP is restored with a chimeric protein where BTV27-NS4 is substituted by BTV8-NS4 in the region encompassing residue 22 to 55. We also demonstrated that WTAP silencing reduces viral titers and the expression of viral proteins, suggesting that BTV-NS4 targets a cellular function of WTAP to increase its viral replication.


Assuntos
Vírus Bluetongue/metabolismo , Bluetongue/metabolismo , Bluetongue/virologia , Doenças dos Bovinos/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Fatores de Virulência/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Bluetongue/genética , Vírus Bluetongue/química , Vírus Bluetongue/genética , Vírus Bluetongue/patogenicidade , Bovinos , Doenças dos Bovinos/genética , Doenças dos Bovinos/virologia , Interações Hospedeiro-Patógeno , Ligação Proteica , Fatores de Processamento de RNA/genética , Alinhamento de Sequência , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Fatores de Virulência/genética , Replicação Viral
3.
J Biol Chem ; 297(3): 101081, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34403699

RESUMO

The human APOBEC3A (A3A) cytidine deaminase is a powerful DNA mutator enzyme recognized as a major source of somatic mutations in tumor cell genomes. However, there is a discrepancy between APOBEC3A mRNA levels after interferon stimulation in myeloid cells and A3A detection at the protein level. To understand this difference, we investigated the expression of two novel alternative "A3Alt" proteins encoded in the +1-shifted reading frame of the APOBEC3A gene. A3Alt-L and its shorter isoform A3Alt-S appear to be transmembrane proteins targeted to the mitochondrial compartment that induce membrane depolarization and apoptosis. Thus, the APOBEC3A gene represents a new example wherein a single gene encodes two proapoptotic proteins, A3A cytidine deaminases that target the genome and A3Alt proteins that target mitochondria.


Assuntos
Citidina Desaminase/genética , Citidina Desaminase/fisiologia , Mitocôndrias/genética , Proteínas/genética , Proteínas/fisiologia , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Citidina Desaminase/metabolismo , DNA/genética , Mutação da Fase de Leitura/genética , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Genoma/genética , Humanos , Mitocôndrias/metabolismo , Mutação/genética , Proteínas/metabolismo , RNA Mensageiro/genética , Fases de Leitura/genética
4.
Parasit Vectors ; 14(1): 144, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676573

RESUMO

BACKGROUND: Louping ill virus (LIV) and tick-borne encephalitis virus (TBEV) are tick-borne flaviviruses that are both transmitted by the major European tick, Ixodes ricinus. Despite the importance of I. ricinus as an arthropod vector, its capacity to acquire and subsequently transmit viruses, known as vector competence, is poorly understood. At the molecular scale, vector competence is governed in part by binary interactions established between viral and cellular proteins within infected tick cells. METHODS: To investigate virus-vector protein-protein interactions (PPIs), the entire set of open reading frames for LIV and TBEV was screened against an I. ricinus cDNA library established from three embryonic tick cell lines using yeast two-hybrid methodology (Y2H). PPIs revealed for each viral bait were retested in yeast by applying a gap repair (GR) strategy, and notably against the cognate protein of both viruses, to determine whether the PPIs were specific for a single virus or common to both. The interacting tick proteins were identified by automatic BLASTX, and in silico analyses were performed to expose the biological processes targeted by LIV and TBEV. RESULTS: For each virus, we identified 24 different PPIs involving six viral proteins and 22 unique tick proteins, with all PPIs being common to both viruses. According to our data, several viral proteins (pM, M, NS2A, NS4A, 2K and NS5) target multiple tick protein modules implicated in critical biological pathways. Of note, the NS5 and pM viral proteins establish PPI with several tumor necrosis factor (TNF) receptor-associated factor (TRAF) proteins, which are essential adaptor proteins at the nexus of multiple signal transduction pathways. CONCLUSION: We provide the first description of the TBEV/LIV-I. ricinus PPI network, and indeed of any PPI network involving a tick-borne virus and its tick vector. While further investigation will be needed to elucidate the role of each tick protein in the replication cycle of tick-borne flaviviruses, our study provides a foundation for understanding the vector competence of I. ricinus at the molecular level. Indeed, certain PPIs may represent molecular determinants of vector competence of I. ricinus for TBEV and LIV, and potentially for other tick-borne flaviviruses.


Assuntos
Proteínas de Artrópodes/metabolismo , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Interações entre Hospedeiro e Microrganismos , Ixodes/genética , Ixodes/virologia , Proteínas Virais/metabolismo , Animais , Proteínas de Artrópodes/genética , Feminino , Biblioteca Gênica , Fases de Leitura Aberta , Domínios e Motivos de Interação entre Proteínas , Proteínas Virais/genética
5.
Viruses ; 13(2)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540654

RESUMO

Bluetongue virus (BTV), an arbovirus transmitted by Culicoides biting midges, is a major concern of wild and domestic ruminants. While BTV induces type I interferon (alpha/beta interferon [IFN-α/ß]) production in infected cells, several reports have described evasion strategies elaborated by this virus to dampen this intrinsic, innate response. In the present study, we suggest that BTV VP3 is a new viral antagonist of the IFN-ß synthesis. Indeed, using split luciferase and coprecipitation assays, we report an interaction between VP3 and both the mitochondrial adapter protein MAVS and the IRF3-kinase IKKε. Overall, this study describes a putative role for the BTV structural protein VP3 in the control of the antiviral response.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Vírus Bluetongue/metabolismo , Bluetongue/metabolismo , Proteína DEAD-box 58/metabolismo , Receptores Imunológicos/metabolismo , Proteínas do Core Viral/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Bluetongue/genética , Bluetongue/virologia , Vírus Bluetongue/genética , Proteína DEAD-box 58/genética , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Ligação Proteica , Receptores Imunológicos/genética , Transdução de Sinais , Proteínas do Core Viral/genética
6.
Viruses ; 13(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478127

RESUMO

Rodent-borne orthohantaviruses are asymptomatic in their natural reservoir, but they can cause severe diseases in humans. Although an exacerbated immune response relates to hantaviral pathologies, orthohantaviruses have to antagonize the antiviral interferon (IFN) response to successfully propagate in infected cells. We studied interactions of structural and nonstructural (NSs) proteins of pathogenic Puumala (PUUV), low-pathogenic Tula (TULV), and non-pathogenic Prospect Hill (PHV) viruses, with human type I and III IFN (IFN-I and IFN-III) pathways. The NSs proteins of all three viruses inhibited the RIG-I-activated IFNß promoter, while only the glycoprotein precursor (GPC) of PUUV, or its cleavage product Gn/Gc, and the nucleocapsid (N) of TULV inhibited it. Moreover, the GPC of both PUUV and TULV antagonized the promoter of IFN-stimulated responsive elements (ISRE). Different viral proteins could thus contribute to inhibition of IFNß response in a viral context. While PUUV and TULV strains replicated similarly, whether expressing entire or truncated NSs proteins, only PUUV encoding a wild type NSs protein led to late IFN expression and activation of IFN-stimulated genes (ISG). This, together with the identification of particular domains of NSs proteins and different biological processes that are associated with cellular proteins in complex with NSs proteins, suggested that the activation of IFN-I is probably not the only antiviral pathway to be counteracted by orthohantaviruses and that NSs proteins could have multiple inhibitory functions.


Assuntos
Infecções por Hantavirus/metabolismo , Infecções por Hantavirus/virologia , Interações Hospedeiro-Patógeno , Interferon Tipo I/metabolismo , Orthohantavírus/fisiologia , Transdução de Sinais , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Chlorocebus aethiops , Proteína DEAD-box 58/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genes Reporter , Orthohantavírus/patogenicidade , Interações Hospedeiro-Patógeno/genética , Humanos , Interferon Tipo I/genética , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Ligação Proteica , Transporte Proteico , Proteômica/métodos , Receptores Imunológicos/metabolismo , Ativação Transcricional , Células Vero , Proteínas Virais/química , Proteínas Virais/genética , Virulência
7.
Int J Mol Sci ; 21(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722052

RESUMO

Microvascular endothelial cells constitute potential targets for exogenous microorganisms, in particular for vector-borne pathogens. Their phenotypic and functional variations according to the organs they are coming from provide an explanation of the organ selectivity expressed in vivo by pathogens. In order to make available relevant tools for in vitro studies of infection mechanisms, our aim was to immortalize bovine organospecific endothelial cells but also to assess their permissivity to viral infection. Using transfection with SV40 large T antigen, six bovine microvascular endothelial cell lines from various organs and one macrovascular cell line from an umbilical cord were established. They display their own panel of endothelial progenitor/mature markers, as assessed by flow cytometry and RT-qPCR, as well as the typical angiogenesis capacity. Using both Bluetongue and foot-and-mouth disease viruses, we demonstrate that some cell lines are preferentially infected. In addition, they can be transfected and are able to express viral proteins such as BTV8-NS3. Such microvascular endothelial cell lines bring innovative tools for in vitro studies of infection by viruses or bacteria, allowing for the study of host-pathogen interaction mechanisms with the actual in vivo target cells. They are also suitable for applications linked to microvascularization, such as anti-angiogenic and anti-tumor research, growing fields in veterinary medicine.


Assuntos
Células Endoteliais/metabolismo , Microvasos/metabolismo , Modelos Biológicos , Viroses , Animais , Bovinos , Linhagem Celular , Células Endoteliais/patologia , Células Endoteliais/virologia , Microvasos/patologia , Microvasos/virologia
8.
J Virol ; 93(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31167915

RESUMO

Bluetongue virus (BTV) is an arbovirus transmitted by blood-feeding midges to a wide range of wild and domestic ruminants. In this report, we showed that BTV, through its nonstructural protein NS3 (BTV-NS3), is able to activate the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway, as assessed by phosphorylation levels of ERK1/2 and the translation initiation factor eukaryotic translation initiation factor 4E (eIF4E). By combining immunoprecipitation of BTV-NS3 and mass spectrometry analysis from both BTV-infected and NS3-transfected cells, we identified the serine/threonine-protein kinase B-Raf (BRAF), a crucial player in the MAPK/ERK pathway, as a new cellular interactor of BTV-NS3. BRAF silencing led to a significant decrease in the MAPK/ERK activation by BTV, supporting a model wherein BTV-NS3 interacts with BRAF to activate this signaling cascade. This positive regulation acts independently of the role of BTV-NS3 in counteracting the induction of the alpha/beta interferon response. Furthermore, the intrinsic ability of BTV-NS3 to bind BRAF and activate the MAPK/ERK pathway is conserved throughout multiple serotypes/strains but appears to be specific to BTV compared to other members of Orbivirus genus. Inhibition of MAPK/ERK pathway with U0126 reduced viral titers, suggesting that BTV manipulates this pathway for its own replication. Altogether, our data provide molecular mechanisms that unravel a new essential function of NS3 during BTV infection.IMPORTANCE Bluetongue virus (BTV) is responsible of the arthropod-borne disease bluetongue (BT) transmitted to ruminants by blood-feeding midges. In this report, we found that BTV, through its nonstructural protein NS3 (BTV-NS3), interacts with BRAF, a key component of the MAPK/ERK pathway. In response to growth factors, this pathway promotes cell survival and increases protein translation. We showed that BTV-NS3 enhances the MAPK/ERK pathway, and this activation is BRAF dependent. Treatment of MAPK/ERK pathway with the pharmacologic inhibitor U0126 impairs viral replication, suggesting that BTV manipulates this pathway for its own benefit. Our results illustrate, at the molecular level, how a single virulence factor has evolved to target a cellular function to increase its viral replication.


Assuntos
Vírus Bluetongue/fisiologia , Bluetongue/metabolismo , Bluetongue/virologia , Interações Hospedeiro-Patógeno , Sistema de Sinalização das MAP Quinases , Proteínas não Estruturais Virais/metabolismo , Animais , Vírus Bluetongue/patogenicidade , Linhagem Celular , Proteínas de Ligação a DNA , Humanos , Interferons/metabolismo , Fosforilação , Ligação Proteica , Transporte Proteico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Fatores de Transcrição , Fatores de Virulência , Replicação Viral
9.
Transbound Emerg Dis ; 66(1): 537-545, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30394662

RESUMO

Competitive-ELISA (c-ELISA) is the most widely used serological test for the detection of Bluetongue virus (BTV) viral protein 7 (VP7) antibodies (Ab). However, these BTV c-ELISAs cannot to distinguish between IgG and IgM. IgM Ab are generated shortly after the primary immune response against an infectious agent, indicating a recent infection or exposure to antigens, such as after vaccination. Because the BTV genome or anti-VP7 Ab can be detected in ruminant blood months after infection, BTV diagnostic tools cannot discriminate between recent and old infections. In this study, we evaluated an IgM-capture ELISA prototype to detect ruminant anti-BTV VP7 IgM on 1,650 serum samples from cattle, sheep, or goats. Animals were BTV-naive, infected, or/and vaccinated with BTV-1, -2, -4, -8, -9, -16, or -27, and we also included 30 sera from cattle infected with the Epizootic haemorrhagic disease virus (EHDV) serotype 6. Results demonstrated that this ELISA kit is specific and can detect the presence of IgM with satisfactory diagnostic specificity and sensitivity from 1 to 5 weeks after BTV infection in domestic ruminants (for goats and cattle; for sheep, at least up to 24 days). The peak of anti-VP7 IgM was reached when the level of infectious viruses and BTV RNA in blood were the highest. The possibility of detecting BTV-RNA in IgM-positive sera allows the amplification and sequencing of the partial RNA segment 2 (encoding the serotype specific to VP2) to determine the causative BTV serotype/strain. Therefore, BTV IgM ELISA can detect the introduction of BTV (or EHDV) in an area with BTV-seropositive domestic animals regardless of their serological BTV status. This approach may also be of particular interest for retrospective epidemiological studies on frozen serum samples.


Assuntos
Animais Domésticos/virologia , Anticorpos Antivirais/sangue , Vírus Bluetongue/imunologia , Bluetongue/diagnóstico , Ensaio de Imunoadsorção Enzimática/veterinária , Imunoglobulina M/sangue , Proteínas do Core Viral/imunologia , Animais , Bluetongue/imunologia , Bluetongue/virologia , Bovinos , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/virologia , Diagnóstico Precoce , Doenças das Cabras/diagnóstico , Doenças das Cabras/imunologia , Doenças das Cabras/virologia , Cabras , Estudos Retrospectivos , Ruminantes , Sorogrupo , Testes Sorológicos/métodos , Ovinos , Doenças dos Ovinos/diagnóstico , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/virologia
10.
BMC Biol ; 14: 69, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27538435

RESUMO

BACKGROUND: After viral infection and the stimulation of some pattern-recognition receptors, TANK-binding kinase I (TBK1) is activated by K63-linked polyubiquitination followed by trans-autophosphorylation. While the activated TBK1 induces type I interferon production by phosphorylating the transcription factor IRF3, the precise molecular mechanisms underlying TBK1 activation remain unclear. RESULTS: We report here the localization of the ubiquitinated and phosphorylated active form of TBK1 to the Golgi apparatus after the stimulation of RIG-I-like receptors (RLRs) or Toll-like receptor-3 (TLR3), due to TBK1 K63-linked ubiquitination on lysine residues 30 and 401. The ubiquitin-binding protein optineurin (OPTN) recruits ubiquitinated TBK1 to the Golgi apparatus, leading to the formation of complexes in which TBK1 is activated by trans-autophosphorylation. Indeed, OPTN deficiency in various cell lines and primary cells impairs TBK1 targeting to the Golgi apparatus and its activation following RLR or TLR3 stimulation. Interestingly, the Bluetongue virus NS3 protein binds OPTN at the Golgi apparatus, neutralizing its activity and thereby decreasing TBK1 activation and downstream signaling. CONCLUSIONS: Our results highlight an unexpected role of the Golgi apparatus in innate immunity as a key subcellular gateway for TBK1 activation after RNA virus infection.


Assuntos
Complexo de Golgi/virologia , Imunidade Inata , Proteínas Serina-Treonina Quinases/metabolismo , Infecções por Vírus de RNA/imunologia , Proteínas de Ciclo Celular , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Complexo de Golgi/metabolismo , Células HEK293 , Células HeLa , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Proteínas de Membrana Transportadoras , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Vírus de RNA , Receptores Imunológicos , Transdução de Sinais , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo , Transfecção , Ubiquitinação , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
11.
Virologie (Montrouge) ; 19(4): 178-186, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065904

RESUMO

Upon viral infection, infected cells mount an antiviral response that culminates with the production of type I IFN (IFN-α/ß) and other pro-inflammatory cytokines that control the infection. Production of type I IFN occurs both in vivo and in vitro in response to Bluetongue virus (BTV), an arthropod-borne virus, but the underlying mechanisms responsible for this event remained unknown until recently. This review describes the recent advances in the identification of cellular sensors and signalling pathways involved in this process. In non-hematopoietic cells, expression of IFN-ß in response to BTV infection depends on the activation of the RNA helicases retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). In contrast, induction of IFN-α/ß synthesis in sheep primary plasmacytoid dendritic cells (pDCs) required the MyD88 adaptor independently of the Toll-like receptor 7 (TLR7), as well as the kinases dsRNA-activated protein kinase (PKR) and stress-activated protein kinase (SAPK)/Jun N-terminal protein kinase (JNK). In order to counteract this antiviral response, most of viruses have elaborated mechanisms to hinder its action. This review also describes the ability of BTV to interfere with the IFN pathway and the recent findings describing the non-structural viral protein NS3 as a powerful antagonist of the host cellular response.

12.
Virus Res ; 182: 59-70, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24211608

RESUMO

The innate immune response is the first line of defence against viruses, involving the production of type I IFN (IFN-α/ß) and other pro-inflammatory cytokines that control the infection. It also shapes the adaptive immune response generated by both T and B cells. Production of type I IFN occurs both in vivo and in vitro in response to Bluetongue virus (BTV), an arthropod-borne virus. However, the mechanisms responsible for the production of IFN-ß in response to BTV remained unknown until recently and are still not completely understood. In this review, we describe the recent advances in the identification of cellular sensors and signalling pathways involved in this process. The RNA helicases retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) were shown to be involved in the expression of IFN-ß as well as in the control of BTV infection in non-haematopoietic cells. In contrast, induction of IFN-α/ß synthesis in sheep primary plasmacytoid dendritic cells (pDCs) required the MyD88 adaptor independently of the Toll-like receptor 7 (TLR7), as well as the kinases dsRNA-activated protein kinase (PKR) and stress-activated protein kinase (SAPK)/Jun N-terminal protein kinase (JNK). As type I IFN is essential for the establishment of an antiviral cellular response, most of viruses have elaborated counteracting mechanisms to hinder its action. This review also addresses the ability of BTV to interfere with IFN-ß synthesis and the recent findings describing the non-structural viral protein NS3 as a powerful antagonist of the host cellular response.


Assuntos
Vírus Bluetongue/imunologia , Evasão da Resposta Imune , Interferon Tipo I/biossíntese , Interferon Tipo I/imunologia , Ovinos/imunologia , Ovinos/virologia , Animais , Interferon Tipo I/antagonistas & inibidores , Receptores Imunológicos , Transdução de Sinais
13.
J Virol ; 86(21): 11789-99, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22915805

RESUMO

Bluetongue virus (BTV), an arthropod-borne member of the Reoviridae family, is a double-stranded RNA virus that causes an economically important livestock disease that has spread across Europe in recent decades. Production of type I interferon (alpha/beta interferon [IFN-α/ß]) has been reported in vivo and in vitro upon BTV infection. However, the cellular sensors and signaling pathways involved in this process remain unknown. Here we studied the mechanisms responsible for the production of IFN-ß in response to BTV serotype 8. Upon BTV infection of A549 cells, expression of IFN-ß and other proinflammatory cytokines was strongly induced at both the protein and mRNA levels. This response appeared to be dependent on virus replication, since exposure to UV-inactivated virus failed to induce IFN-ß. We also demonstrated that BTV infection activated the transcription factors IFN regulatory factor 3 and nuclear factor κB. We investigated the role of several pattern recognition receptors in this response and showed that expression of IFN-ß was greatly reduced after small-interfering-RNA-mediated knockdown of the RNA helicase encoded by retinoic acid-inducible gene I (RIG-I) or melanoma differentiation-associated gene 5 (MDA5). In contrast, silencing of MyD88, Toll-like receptor 3, or the recently described DexD/H-box helicase DDX1 sensor had no or a weak effect on IFN-ß induction, suggesting that the RIG-I-like receptor pathway is specifically engaged for BTV sensing. Moreover, we also showed that overexpression of either RIG-I or MDA5 impaired BTV expression in infected A549 cells. Overall, this indicates that RIG-I and MDA5 can both contribute to the recognition and control of BTV infection.


Assuntos
Vírus Bluetongue/imunologia , RNA Helicases DEAD-box/metabolismo , Células Epiteliais/virologia , Interações Hospedeiro-Patógeno , Interferon beta/biossíntese , Animais , Linhagem Celular , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , Perfilação da Expressão Gênica , Inativação Gênica , Humanos , Helicase IFIH1 Induzida por Interferon , Interferon beta/genética , Receptores Imunológicos
14.
J Virol ; 86(10): 5817-28, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22438548

RESUMO

Dendritic cells (DCs), especially plasmacytoid DCs (pDCs), produce large amounts of alpha/beta interferon (IFN-α/ß) upon infection with DNA or RNA viruses, which has impacts on the physiopathology of the viral infections and on the quality of the adaptive immunity. However, little is known about the IFN-α/ß production by DCs during infections by double-stranded RNA (dsRNA) viruses. We present here novel information about the production of IFN-α/ß induced by bluetongue virus (BTV), a vector-borne dsRNA Orbivirus of ruminants, in sheep primary DCs. We found that BTV induced IFN-α/ß in skin lymph and in blood in vivo. Although BTV replicated in a substantial fraction of the conventional DCs (cDCs) and pDCs in vitro, only pDCs responded to BTV by producing a significant amount of IFN-α/ß. BTV replication in pDCs was not mandatory for IFN-α/ß production since it was still induced by UV-inactivated BTV (UV-BTV). Other inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and IL-12p40, were also induced by UV-BTV in primary pDCs. The induction of IFN-α/ß required endo-/lysosomal acidification and maturation. However, despite being an RNA virus, UV-BTV did not signal through Toll-like receptor 7 (TLR7) for IFN-α/ß induction. In contrast, pathways involving the MyD88 adaptor and kinases dsRNA-activated protein kinase (PKR) and stress-activated protein kinase (SAPK)/Jun N-terminal protein kinase (JNK) were implicated. This work highlights the importance of pDCs for the production of innate immunity cytokines induced by a dsRNA virus, and it shows that a dsRNA virus can induce IFN-α/ß in pDCs via a novel TLR-independent and Myd88-dependent pathway. These findings have implications for the design of efficient vaccines against dsRNA viruses.


Assuntos
Vírus Bluetongue/imunologia , Bluetongue/imunologia , Células Dendríticas/imunologia , Interferon Tipo I/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/imunologia , Animais , Bluetongue/genética , Bluetongue/virologia , Vírus Bluetongue/genética , Vírus Bluetongue/fisiologia , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Células Dendríticas/virologia , Feminino , Imunidade Inata , Interferon Tipo I/genética , Glicoproteínas de Membrana , Fator 88 de Diferenciação Mieloide/genética , Receptores de Interleucina-1 , Ovinos/imunologia , Ovinos/virologia , Transdução de Sinais , Receptor 7 Toll-Like/genética , Receptor 8 Toll-Like/genética
15.
J Biol Chem ; 284(33): 21797-21809, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19546225

RESUMO

The mitochondria-bound adapter MAVS participates in IFN induction by recruitment of downstream partners such as members of the TRAF family, leading to activation of NF-kappaB, and the IRF3 pathways. A yeast two-hybrid search for MAVS-interacting proteins yielded the Polo-box domain (PBD) of the mitotic Polo-like kinase PLK1. We showed that PBD associates with two different domains of MAVS in both dependent and independent phosphorylation events. The phosphodependent association requires the phosphopeptide binding ability of PBD. It takes place downstream of the proline-rich domain of MAVS, within an STP motif, characteristic of the binding of PLK1 to its targets, where the central Thr234 residue is phosphorylated. Its phosphoindependent association takes place at the C terminus of MAVS. PLK1 strongly inhibits the ability of MAVS to activate the IRF3 and NF-kappaB pathways and to induce IFN. Reciprocally, depletion of PLK1 can increase IFN induction in response to RIG-I/SeV or RIG-I/poly(I)-poly(C) treatments. This inhibition is dependent on the phosphoindependent association of PBD at the C terminus of MAVS where it disrupts the association of MAVS with its downstream partner TRAF3. IFN induction was strongly inhibited in cells arrested in G2/M by nocodazole, which provokes increased expression of endogenous PLK1. Interestingly, depletion of PLK1 from these nocodazole-treated cells could restore, at least partially, IFN induction. Altogether, these data demonstrate a new function for PLK1 as a regulator of IFN induction and provide the basis for the development of inhibitors preventing the PLK1/MAVS association to sustain innate immunity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Interferons/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Linhagem Celular Tumoral , Células HeLa , Humanos , Modelos Biológicos , NF-kappa B/metabolismo , Nocodazol/farmacologia , Fosfopeptídeos/química , Fosforilação , Prolina/química , Estrutura Terciária de Proteína , Treonina/química , Técnicas do Sistema de Duplo-Híbrido , Quinase 1 Polo-Like
16.
Sci STKE ; 2007(384): pe20, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17473309

RESUMO

The cytoplasmic CARD-containing DExD/H box RNA helicases RIG-I and MDA5 act as sensors of viral infections through recognition of viral double-stranded (ds) RNAs. They both associate with the mitochondrial adaptor IPS-1 (also referred to as MAVS, VISA, and CARDIF) through homotypic CARD-CARD interactions. IPS-1, in turn, triggers signaling pathways, including activation of the protein kinases TBK1 and IKKepsilon, responsible for the phosphorylation of IRF3, a key transcription factor involved in interferon (IFN) synthesis, one essential element of the innate immune response. RIG-I remains in an autoinhibited state in the absence of dsRNA, through an internal repressor domain (RD) that binds within both its CARD and its RNA helicase domains and therefore acts in cis to control its multimerization and interaction with IPS-1. Ectopic expression of the RD prevents signaling and increases cell permissiveness to viruses, including hepatitis C virus. LGP2, which is another DExD/H RNA helicase of the RIG-I and MDA5 family and which is devoid of CARD domain, negatively controls IFN induction at different levels: by sequestering dsRNA, by blocking RIG-I's multimerization in trans through a domain analogous to the RIG-I RD, and by competing with the protein kinase IKKepsilon for a common interaction site on IPS-1. The ability of RIG-I and LGP2 to exert such a feedback control at the earliest steps of IFN synthesis allows the cells to exert a tight regulation of the induction of the innate immune response.


Assuntos
RNA Helicases DEAD-box/fisiologia , Interferons/biossíntese , RNA Helicases/fisiologia , Linhagem Celular , Proteína DEAD-box 58 , Humanos , Imunidade Inata , Fosforilação , Receptores Imunológicos , Transdução de Sinais
17.
J Immunol ; 178(6): 3368-72, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17339430

RESUMO

Influenza A virus (IAV) triggers a contagious acute respiratory disease that causes considerable mortality annually. Recently, we established a role for the pattern-recognition TLR3 in the response of lung epithelial cells to IAV-derived dsRNA. However, additional nucleic acid-recognition proteins have lately been implicated as key viral sensors, including the RNA helicases retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene (MDA)-5. In this study, we investigated the respective role of TLR3 vs RIG-I/MDA-5 signaling in human respiratory epithelial cells infected by IAV using BEAS-2B cells transfected with vectors encoding either a dominant-negative form of TLR3 or of mitochondrial antiviral signaling protein (MAVS; a signaling intermediate of RIG-I and MDA-5), or with plasmids overexpressing functional RIG-I or MDA-5. We demonstrate that the sensing of IAV by TLR3 primarily regulates a proinflammatory response, whereas RIG-I (but not MDA-5) mediates both a type I IFN-dependent antiviral signaling and a proinflammatory response.


Assuntos
Células Epiteliais/imunologia , Influenza Humana/imunologia , Pulmão/imunologia , Receptores do Ácido Retinoico/imunologia , Transdução de Sinais/imunologia , Receptor 3 Toll-Like/imunologia , Linhagem Celular , RNA Helicases DEAD-box/imunologia , Células Epiteliais/virologia , Humanos , Inflamação/genética , Inflamação/imunologia , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/genética , Interferon Tipo I/imunologia , Helicase IFIH1 Induzida por Interferon , Proteínas Mitocondriais/imunologia , RNA Helicases , RNA de Cadeia Dupla/imunologia , RNA Viral/imunologia , Transdução de Sinais/genética , Receptor 3 Toll-Like/genética
18.
J Gen Virol ; 87(Pt 12): 3587-3598, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17098974

RESUMO

As a tool for the identification and/or purification of hepatitis C virus (HCV)-infected cells, a chimeric form of the Gal4VP16 transcription factor was engineered to be activated only in the presence of the HCV NS3/4A protease and to induce different reporter genes [choramphenical acetyltransferase (CAT), green fluorescent protein (GFP) and the cell-surface marker H-2K(k)] through the (Gal4)(5)-E1b promoter. For this, the NS5A/5B trans-cleavage motif of HCV of genotype 1a was inserted between Gal4VP16 and the N terminus of the endoplasmic reticulum (ER)-resident protein PERK, and it was demonstrated that it could be cleaved specifically by NS3/4A. Accordingly, transient transfection in tetracycline-inducible UHCV-11 cells expressing the HCV polyprotein of genotype 1a revealed the migration of the Gal4VP16 moiety of the chimera from the ER to the nucleus upon HCV expression. Activation of the chimera provoked specific gene induction, as shown by CAT assay, first in UHCV-11 cells and then in Huh-7 cells expressing an HCV replicon of genotype 1b (Huh-7 Rep). In addition, the GFP reporter gene allowed rapid fluorescence monitoring of HCV expression in the Huh-7 Rep cells. Finally, the chimera was introduced into Huh-7.5 cells infected with cell culture-generated HCV JFH1 (genotype 2a), allowing the purification of the HCV-infected cells by immunomagnetic cell sorting using H-2K(k) as gene reporter. In conclusion, the Gal4VP16 chimera activation system can be used for the rapid identification and purification of HCV-infected cells.


Assuntos
Proteínas de Transporte/metabolismo , Hepacivirus/fisiologia , Separação Imunomagnética/métodos , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/metabolismo , Proteínas de Transporte/genética , Linhagem Celular , Núcleo Celular/química , Cloranfenicol O-Acetiltransferase/biossíntese , Cloranfenicol O-Acetiltransferase/genética , Retículo Endoplasmático/química , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Antígenos H-2/biossíntese , Hepacivirus/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Chaperonas Moleculares/genética , Proteínas Recombinantes de Fusão/metabolismo , Transativadores/genética , Transativadores/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas Virais/genética
19.
Hepatology ; 44(6): 1635-47, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17133498

RESUMO

During a viral infection, binding of viral double-stranded RNAs (dsRNAs) to the cytosolic RNA helicase RIG-1 leads to recruitment of the mitochondria-associated Cardif protein, involved in activation of the IRF3-phosphorylating IKKepsilon/TBK1 kinases, interferon (IFN) induction, and development of the innate immune response. The hepatitis C virus (HCV) NS3/4A protease cleaves Cardif and abrogates both IKKepsilon/TBK1 activation and IFN induction. By using an HCV replicon model, we previously showed that ectopic overexpression of IKKepsilon can inhibit HCV expression. Here, analysis of the IKKepsilon transcriptome profile in these HCV replicon cells showed induction of several genes associated with the antiviral action of IFN. Interestingly, IKKepsilon still inhibits HCV expression in the presence of neutralizing antibodies to IFN receptors or in the presence of a dominant negative STAT1alpha mutant. This suggests that good IKKepsilon expression levels are important for rapid activation of the cellular antiviral response in HCV-infected cells, in addition to provoking IFN induction. To determine the physiological importance of IKKepsilon in HCV infection, we then analyzed its expression levels in liver biopsy specimens from HCV-infected patients. This analysis also included genes of the IFN induction pathway (RIG-I, MDA5, LGP2, Cardif, TBK1), and three IKKepsilon-induced genes (IFN-beta, CCL3, and ISG15). The results show significant inhibition of expression of IKKepsilon and of the RNA helicases RIG-I/MDA5/LGP2 in the HCV-infected patients, whereas expression of TBK1 and Cardif was not significantly altered. In conclusion, given the antiviral potential of IKKepsilon and of the RNA helicases, these in vivo data strongly support an important role for these genes in the control of HCV infection.


Assuntos
Hepacivirus/efeitos dos fármacos , Hepatite C Crônica/fisiopatologia , Quinase I-kappa B/biossíntese , Quinase I-kappa B/fisiologia , Interferons/biossíntese , Adulto , Idoso , Biópsia , Células Cultivadas , Proteína DEAD-box 58 , RNA Helicases DEAD-box/biossíntese , Regulação para Baixo , Feminino , Humanos , Helicase IFIH1 Induzida por Interferon , Fígado/fisiopatologia , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Receptores Imunológicos , Replicon/fisiologia
20.
J Virol ; 80(12): 6072-83, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16731946

RESUMO

Intracellular RNA virus infection is detected by the cytoplasmic RNA helicase RIG-I that plays an essential role in signaling to the host antiviral response. Recently, the adapter molecule that links RIG-I sensing of incoming viral RNA to downstream signaling and gene activation events was characterized by four different groups; MAVS/IPS-1-1/VISA/Cardif contains an amino-terminal CARD domain and a carboxyl-terminal mitochondrial transmembrane sequence that localizes to the mitochondrial membrane. Furthermore, the hepatitis C virus NS3-4A protease complex specifically targets MAVS/IPS-1/VISA/Cardif for cleavage as part of its immune evasion strategy. With a novel search program written in python, we also identified an uncharacterized protein, KIAA1271 (K1271), containing a single CARD-like domain at the N terminus and a Leu-Val-rich C terminus that is identical to that of MAVS/IPS-1/VISA/Cardif. Using a combination of biochemical analysis, subcellular fractionation, and confocal microscopy, we now demonstrate that NS3-4A cleavage of MAVS/IPS-1/VISA/Cardif/K1271 results in its dissociation from the mitochondrial membrane and disrupts signaling to the antiviral immune response. Furthermore, virus-induced IKKepsilon kinase, but not TBK1, colocalized strongly with MAVS at the mitochondrial membrane, and the localization of both molecules was disrupted by NS3-4A expression. Mutation of the critical cysteine 508 to alanine was sufficient to maintain mitochondrial localization of MAVS/IPS-1/VISA/Cardif and IKKepsilon in the presence of NS3-4A. These observations provide an outline of the mechanism by which hepatitis C virus evades the interferon antiviral response.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hepacivirus , Quinase I-kappa B/metabolismo , Proteínas Mitocondriais/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas não Estruturais Virais/metabolismo , Hepacivirus/química , Humanos , Membranas Intracelulares/metabolismo , Mitocôndrias/ultraestrutura , Peptídeo Hidrolases/metabolismo , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA