Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Virology ; 595: 110065, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38569227

RESUMO

Nucleot(s)ide analogues, the current antiviral treatments against chronic hepatitis B (CHB) infection, are non-curative due to their inability to eliminate covalently closed circular DNA (cccDNA) from the infected hepatocytes. Preclinical studies have shown that coumarin derivatives can effectively reduce the HBV DNA replication. We evaluated the antiviral efficacy of thirty new coumarin derivatives in cell culture models for studying HBV. Furanocoumarins Fc-20 and Fc-31 suppressed the levels of pre-genomic RNA as well as cccDNA, and reduced the secretion of virions, HBsAg and HBeAg. The antiviral efficacies of Fc-20 and Fc31 improved further when used in combination with the hepatitis B antiviral drug Entecavir. There was a marked reduction in the intracellular HBx level in the presence of these furanocoumarins due to proteasomal degradation resulting in the down-regulation of HBx-dependent viral genes. Importantly, both Fc-20 and Fc-31 were non-cytotoxic to cells even at high concentrations. Further, our molecular docking studies confirmed a moderate to high affinity interaction between furanocoumarins and viral HBx via residues Ala3, Arg26 and Lys140. These data suggest that furanocoumarins could be developed as a new therapeutic for CHB infection.


Assuntos
Antivirais , DNA Circular , Furocumarinas , Vírus da Hepatite B , Complexo de Endopeptidases do Proteassoma , Transativadores , Proteínas Virais Reguladoras e Acessórias , Replicação Viral , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Vírus da Hepatite B/metabolismo , Replicação Viral/efeitos dos fármacos , Humanos , Transativadores/metabolismo , Transativadores/genética , DNA Circular/metabolismo , DNA Circular/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Furocumarinas/farmacologia , Antivirais/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , DNA Viral/metabolismo , DNA Viral/genética , Regulação para Baixo/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Células Hep G2
2.
Microbiol Spectr ; 10(6): e0172022, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36314905

RESUMO

Currently, there is no data on the molecular quantification of microbial indicators of recycled water quality in India. In this study, multiple microbial pathogens and indicators of water quality were evaluated at three wastewater treatment plants located in two Indian cities (New Delhi and Jaipur) to determine the treatment performance and suitability of recycled water for safe and sustainable reuse applications. Real-time polymerase chain reaction (PCR) was used for the rapid evaluation of six human pathogens and six microbial indicators of fecal contamination. Among the microbial indicators, pepper mild mottle virus (PMMoV), F+RNA-GII bacteriophage, Bacteroides thetaiotamicron, and four human pathogens (Norovirus genogroups I & II, Giardia, and Campylobacter coli) were detected in all of the influent samples analyzed. This work suggests that the raw influents contain lower levels of noroviruses and adenoviruses and higher levels of Giardia compared to those reported from other geographic regions. Overall, the efficacy of the removal of microbial targets was over 93% in the final effluent samples, which is consistent with reports from across the world. PMMoV and Giardia were identified as the best microbial targets, from the microbial indicators spanning across bacteria, bacteriophages, DNA/RNA viruses, and protozoan parasites, by which to evaluate treatment performance and recycled water quality in Indian settings, as they were consistently present at high concentrations in untreated wastewater both within and across the sites. Also, they showed a strong correlation with other microbial agents in both the raw influent and in the final effluent. These findings provide valuable insights into the use of culture-independent molecular indicators that can be used to assess the microbial quality of recycled water in Indian settings. IMPORTANCE Wastewater treatment plants (WWTPs) have rapidly increased in India during the last decade. Nonetheless, there are only a few labs in India that can perform culture-based screening for microbial quality. In the last 2 years of the pandemic, India has witnessed a sharp increase in molecular biology labs. Therefore, it is evident that culture-independent real-time PCR will be increasingly used for the assessment of microbial indicators/pathogens in wastewater, especially in resource-limited settings. There is no data available on the molecular quantitation of microbial indicators from India. There is an urgent need to understand and evaluate the performance of widely used microbial indicators via molecular quantitation in Indian WWTPs. Our findings lay the groundwork for the molecular quantitation of microbial indicators in WWTPs in India. We have screened for 12 microbial targets (indicators and human pathogens) and have identified pepper mild mottle virus (PMMoV) and Giardia as the best molecular microbiological indicators in Indian settings.


Assuntos
Norovirus , Vírus de RNA , Tobamovirus , Purificação da Água , Humanos , Águas Residuárias , Tobamovirus/genética , Vírus de DNA , Microbiologia da Água
3.
Microbiol Spectr ; 10(5): e0273121, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35993712

RESUMO

Clinical and in vivo studies have demonstrated a role for hepatitis B virus (HBV)-encoded HBsAg (hepatitis B surface antigen) in HBV-related hepatocellular carcinoma (HCC); however, the underlying mechanisms remain largely unknown. Here, we investigated the role of HBsAg in regulating long noncoding RNAs (lncRNAs) involved in HCC progression. Our analysis of microarray data sets identified LINC00665 as an HBsAg-regulated lncRNA. Furthermore, LINC00665 is upregulated in liver samples from HBV-infected patients as well as in HCC, specifically in HBV-related HCC liver samples. These findings were supported by our in vitro data demonstrating that HBsAg, as well as HBV, positively regulates LINC00665 in multiple HBV cell culture models. Next, we evaluated the oncogenic potential of LINC00665 by its overexpression and CRISPR interference (CRISPRi)-based knockdown in various cell-based assays. LINC00665 promoted cell proliferation, migration, and colony formation but inhibited cell apoptosis in vitro. We then identified the underlying mechanism of HBsAg-mediated regulation of LINC00665. We used immunofluorescence assays to show that HBsAg enhanced the nuclear translocation of NF-κB factors in HepG2 cells, confirming that HBsAg activates NF-κB. Inhibition of NF-κB signaling nullified HBsAg-mediated LINC00665 upregulation, suggesting that HBsAg acts through NF-κB to regulate LINC00665. Furthermore, the LINC00665 promoter contains NF-κB binding sites, and their disruption abrogated HBsAg-induced LINC00665 upregulation. Finally, HBsAg facilitated the enrichment of the NF-κB factors NF-κB1, RelA, and c-Rel in the LINC00665 promoter. Taken together, this work shows that HBsAg can drive hepatocarcinogenesis by upregulating oncogenic LINC000665 through the NF-κB pathway, thereby identifying a novel mechanism in HBV-related HCC. IMPORTANCE Hepatitis B virus (HBV) is a major risk factor for hepatocellular carcinoma (HCC). Numerous reports indicate an oncogenic role for HBV-encoded HBsAg; however, the underlying mechanisms are not well understood. Here, we studied the role of HBsAg in regulating lncRNAs involved in hepatocarcinogenesis. We demonstrate that HBsAg, as well as HBV, positively regulates oncogenic lncRNA LINC00665. The clinical significance of this lncRNA is highlighted by our observation that LINC00665 is upregulated in liver samples during HBV infection and HBV-related HCC. Furthermore, we show LINC00665 can drive hepatocarcinogenesis by promoting cell proliferation, colony formation, and cell migration and inhibiting apoptosis. Taken together, this work identified LINC00665 as a novel gene through which HBsAg can drive hepatocarcinogenesis. Finally, we show that HBsAg enhances LINC00665 levels in hepatocytes by activating the NF-κB pathway, thereby identifying a novel mechanism by which HBV may contribute to HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia
4.
Sci Rep ; 12(1): 5019, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322051

RESUMO

Herpesviruses are known to acquire several genes from their hosts during evolution. We found that a significant proportion of virus homologues encoded by HSV-1, HSV-2, EBV and KSHV and their human counterparts contain G-quadruplex motifs in their promoters. We sought to understand the role of G-quadruplexes in the regulatory regions of viral Bcl-2 homologues encoded by KSHV (KS-Bcl-2) and EBV (BHRF1). We demonstrate that the KSHV KS-Bcl-2 and the EBV BHRF1 promoter G-quadruplex motifs (KSHV-GQ and EBV-GQ) form stable intramolecular G-quadruplexes. Ligand-mediated stabilization of KS-Bcl-2 and BHRF1 promoter G-quadruplexes significantly increased the promoter activity resulting in enhanced transcription of these viral Bcl-2 homologues. Mutations disrupting KSHV-GQ and EBV-GQ inhibit promoter activity and render the KS-Bcl-2 and the BHRF1 promoters non-responsive to G-quadruplex ligand. In contrast, promoter G-quadruplexes of human bcl-2 gene inhibit promoter activity. Further, KS-Bcl-2 and BHRF1 promoter G-quadruplexes augment RTA (a virus-encoded transcription factor)-mediated increase in viral bcl-2 promoter activity. In sum, this work highlights how human herpesviruses have evolved to exploit promoter G-quadruplexes to regulate virus homologues to counter their cellular counterparts.


Assuntos
Quadruplex G , Herpesvirus Humano 8 , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/genética , Humanos , Ligantes , Regiões Promotoras Genéticas , Proteínas Virais/genética
5.
Pathogens ; 12(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36678391

RESUMO

Hepatitis C virus (HCV) is a bloodborne pathogen that can cause chronic liver disease and hepatocellular carcinoma. The loss of CpGs from virus genomes allows escape from restriction by the host zinc-finger antiviral protein (ZAP). The evolution of HCV in the human host has not been explored in the context of CpG depletion. We analysed 2616 full-length HCV genomes from 1977 to 2021. During the four decades of evolution in humans, we found that HCV genomes have become significantly depleted in (a) CpG numbers, (b) CpG O/E ratios (i.e., relative abundance of CpGs), and (c) the number of ZAP-binding motifs. Interestingly, our data suggests that the loss of CpGs in HCV genomes over time is primarily driven by the loss of ZAP-binding motifs; thus suggesting a yet unknown role for ZAP-mediated selection pressures in HCV evolution. The HCV core gene is significantly enriched for the number of CpGs and ZAP-binding motifs. In contrast to the rest of the HCV genome, the loss of CpGs from the core gene does not appear to be driven by ZAP-mediated selection. This work highlights CpG depletion in HCV genomes during their evolution in humans and the role of ZAP-mediated selection in HCV evolution.

6.
J Biol Chem ; 297(4): 101233, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34562448

RESUMO

Clinical and epidemiological studies support a role for vitamin D in suppressing hepatitis B virus (HBV). This antiviral role of vitamin D is widely attributed to vitamin D receptor (VDR)/retinoid X receptor-mediated regulation of host immunomodulatory genes through vitamin D response elements (VDREs) in their promoters. Here, we investigated the ability of calcitriol (1α,25-dihydroxyvitamin D3, metabolically activated vitamin D) to directly regulate HBV activity through this signaling pathway. We observed that calcitriol selectively inhibited only the HBV core promoter without affecting the HBV-PreS1, HBV-PreS2/S, or HBx promoters. We then identified a VDRE cluster in the HBV core promoter that is highly conserved across most HBV genotypes. Disruption of this VDRE cluster abrogated calcitriol-mediated suppression of the HBV core promoter. Furthermore, we showed that VDR interacts directly with the VDRE cluster in the HBV core promoter independent of retinoid X receptor. This demonstrates that calcitriol inhibits HBV core promoter activity through a noncanonical calcitriol-activated VDR pathway. Finally, we observed that calcitriol suppressed expression of the canonical HBV core promoter transcripts, pregenomic RNA, and precore RNA in multiple HBV cell culture models. In addition, calcitriol inhibited the secretion of hepatitis B "e" antigen and hepatitis B surface antigen (HBV-encoded proteins linked to poor disease prognosis), without affecting virion secretion. Our findings identify VDR as a novel regulator of HBV core promoter activity and also explain at least in part the correlation of vitamin D levels to HBV activity observed in clinical studies. Furthermore, this study has implications on the potential use of vitamin D along with anti-HBV therapies, and lays the groundwork for studies on vitamin D-mediated regulation of viruses through VDREs in virus promoters.


Assuntos
Calcitriol/farmacologia , Antígenos E da Hepatite B/biossíntese , Vírus da Hepatite B/metabolismo , Regiões Promotoras Genéticas , Receptores de Calcitriol/metabolismo , Receptores X de Retinoides/metabolismo , Células Hep G2 , Hepatite B/tratamento farmacológico , Hepatite B/genética , Hepatite B/metabolismo , Antígenos E da Hepatite B/genética , Vírus da Hepatite B/genética , Humanos , Receptores de Calcitriol/genética , Receptores X de Retinoides/genética
7.
Dalton Trans ; 50(15): 5197-5207, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33881075

RESUMO

A facile chemical route is reported for synthesizing red-emitting photoluminescent/MRI multi-functional KLa(0.95-x)GdxF4:Eu3+ (x = 0 to 0.4) bio-compatible nanomaterials for targeted in vitro tumor imaging. Hexagonal phase pure nanoparticles show a significant and systematic change in morphology with enhanced photoluminescence due to the substitution of La3+ with Gd3+ ions. Single phase ß-KLa(0.95-x)GdxF4:Eu3+ exhibits multifunctional properties, both intense red emission and strong paramagnetism for high-contrast bioimaging applications. These silica capped magnetic/luminescent nanoparticles show long-term colloidal stability, optical transparency in water, strong red emission, and low cytotoxicity. The cellular uptake of coated nanoparticles was investigated in liver cancer cell line Huh-7. Our findings suggest that these nanoparticles can serve as highly luminescent imaging probes for in vitro applications with potential for in vivo and live cell imaging applications.


Assuntos
Antineoplásicos/química , Neoplasias Hepáticas/diagnóstico por imagem , Substâncias Luminescentes/química , Nanopartículas/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Európio/química , Flúor/química , Gadolínio/química , Humanos , Elementos da Série dos Lantanídeos/química , Substâncias Luminescentes/síntese química , Substâncias Luminescentes/farmacologia , Tamanho da Partícula , Potássio/química , Células Tumorais Cultivadas
8.
Chemosphere ; 262: 128305, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182158

RESUMO

The fine particulate matter (PM2.5) was collected at academic campus of Indian Institute of Technology, Delhi, India from January-December 2017. The PM2.5 samples were analysed for carcinogenic (Cd, Cr, As, Ni, and Pb) and non-carcinogenic (V, Cu, Zn, Fe) trace metals and their elicited effects on carcinoma epithelial cell line A549. Toxicological testing was done with ELISA kit. Same analyses were repeated for standard reference material (NIST-1648a) represents urban particulate matter. The student-t test and spearman correlation were used for data analysis. The seasonality in PM2.5 mass concentration and chemical composition showed effect on biological outcomes. The PM2.5 in post-monsoon and winter had higher amount of trace metals compared to mass collected in pre-monsoon and monsoon. Following the trend in PM mass concentration significantly (p < 0.5) lower cell viability was observed in post-monsoon and winter compared to other two seasons. NIST UPM 1648(a) samples always had higher cytotoxicity compared to ambient PM2.5 Delhi sample. Strong association of Chromium, Nickel, Cadmium, and Zinc was observed with cell viability and reactive oxygen species (ROS) production. In winter IL-6, IL-8 production were 2.8 and 3 times higher than values observed in post-monsoon and 53 and 9 times higher than control. In winter season trace metals As, Cu, Fe, in pre-monsoon Cr, Ni, As, Pb, V, and Fe, in post-monsoon Cd and V strongly correlated with ROS generation. ROS production in winter and pre-monsoon seasons found to be 2.6 and 1.3 times higher than extremely polluted post-monsoon season which had 2 to 3 times higher PM2.5 concentration compared to winter and pre-monsoon. The result clearly indicated that the presence of Fe in winter and pre-monsoon seasons catalysed the ROS production, probably OH˙ radical caused high cytokines production which influenced the cell viability reduction, while in post-monsoon PM majorly composed of Pb, As, Fe and Cu and affected by photochemical smog formation showed significant association between ROS production with cell viability. Overall, in Delhi most toxic seasons for respiratory system are winter and post-monsoon and safest season is monsoon.


Assuntos
Poluentes Atmosféricos/toxicidade , Monitoramento Ambiental/métodos , Células Epiteliais/efeitos dos fármacos , Metais Pesados/toxicidade , Material Particulado/toxicidade , Espécies Reativas de Oxigênio/análise , Células A549 , Poluentes Atmosféricos/análise , Sobrevivência Celular/efeitos dos fármacos , Citocinas/análise , Células Epiteliais/imunologia , Células Epiteliais/patologia , Humanos , Índia , Metais Pesados/análise , Material Particulado/análise , Estações do Ano
9.
BMC Mol Cell Biol ; 21(1): 67, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32972365

RESUMO

BACKGROUND: G-quadruplexes regulate gene expression, recombination, packaging and latency in herpesviruses. Herpesvirus-encoded miRNAs have been linked to important biological functions. The presence and the biological role of G-quadruplexes have not been studied in the regulatory regions of virus miRNA. We hypothesized that herpesvirus-encoded miRNAs are regulated by G-quadruplexes in their promoters. RESULTS: We analyzed the 1 kb regulatory regions of all herpesvirus-encoded miRNAs for the presence of putative quadruplex-forming sequences (PQS). Over two-third (67%) of the regulatory regions of herpesvirus miRNAs had atleast 1 PQS. The 200 bp region of the promoter proximal to herpesvirus miRNA is particularly enriched for PQS. We chose to study the G-quadruplex motifs in the promoters of miR-K12 cluster in Kaposi's sarcoma-associated Herpesvirus (KSHV miR-K12-1-9,11) and the miR-US33 encoded by Human Cytomegalovirus (HCMV miR-US33). Biophysical characterization indicates that the G-quadruplex motifs in the promoters of the KSHV miR-K12 cluster and the HCMV miR-US33 form stable intramolecular G-quadruplexes in vitro. Mutations disrupting the G-quadruplex motif in the promoter of the KSHV miR-K12 cluster significantly inhibits promoter activity, while those disrupting the motif in the promoter of HCMV miR-US33 significantly enhance the promoter activity as compared to that of the respective wild-type promoter. Similarly, the addition of G-quadruplex binding ligands resulted in the modulation of promoter activity of the wild-type promoters (with intact G-quadruplex) but not the mutant promoters (containing quadruplex-disrupting mutations). CONCLUSION: Our findings highlight previously unknown mechanisms of regulation of virus-encoded miRNA and also shed light on new roles for G-quadruplexes in herpesvirus biology.


Assuntos
Citomegalovirus/genética , Herpesvirus Humano 8/genética , MicroRNAs/genética , Linhagem Celular , Quadruplex G , Expressão Gênica/genética , Células HEK293 , Humanos , Ligantes , Regiões Promotoras Genéticas/genética , RNA Viral/genética , Sequências Reguladoras de Ácido Nucleico/genética
10.
Angew Chem Int Ed Engl ; 59(48): 21377-21381, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33462912

RESUMO

The biological applications of germylenes remain unrealised owing to their unstable nature. We report the isolation of air-, water-, and culture-medium-stable germylene DPMGeOH (3; DPM=dipyrromethene ligand) and its potential biological application. Compound 3 exhibits antiproliferative effects comparable to that of cisplatin in human cancer cells. The cytotoxicity of compound 3 on normal epithelial cells is minimal and is similar to that of the currently used anticancer drugs. These findings provide a framework for a plethora of biological studies using germylenes and have important implications for low-valent main-group chemistry.


Assuntos
Complexos de Coordenação/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Complexos de Coordenação/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Testes de Sensibilidade Microbiana , Estrutura Molecular , Células Vero
11.
Neurogenetics ; 20(4): 197-208, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31432357

RESUMO

Rare missense variants play a crucial role in amyotrophic lateral sclerosis (ALS) pathophysiology. We report rare/novel missense variants from 154 Indian ALS patients, identified through targeted sequencing of 25 ALS-associated genes. As pathogenic variants could explain only a small percentage of ALS pathophysiology in our cohort, we investigated the frequency of tolerated and benign novel/rare variants, which could be potentially ALS susceptible. These variants were identified in 5.36% (8/149) of sporadic ALS (sALS) cases; with one novel variant each in ERBB4, SETX, DCTN1, and MATR3; four rare variants, one each in PON2 and ANG and two different rare variants in SETX. Identified variants were either absent or present at extremely rare frequencies (MAF < 0.01) in large population databases and were absent in 50 healthy controls sequenced through Sanger method. Furthermore, an oligogenic basis of ALS was observed in three sALS, with co-occurrence of intermediate-length repeat expansions in ATXN2 and a rare/novel variant in DCTN1 and SETX genes. Additionally, molecular dynamics and biochemical functional analysis of an angiogenin variant (R21G) identified from our cohort demonstrated loss of ribonucleolytic and nuclear translocation activities. Our findings suggest that rare variants could be potentially pathogenic and functional studies are warranted to decisively establish the pathogenic mechanisms associated with them.


Assuntos
Esclerose Lateral Amiotrófica/genética , Transporte Ativo do Núcleo Celular , Adulto , Arildialquilfosfatase/genética , Biologia Computacional , Cristalografia por Raios X , DNA Helicases/genética , Complexo Dinactina/genética , Feminino , Predisposição Genética para Doença , Variação Genética , Células HeLa , Heterozigoto , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Simulação de Dinâmica Molecular , Enzimas Multifuncionais/genética , Mutação de Sentido Incorreto , Neovascularização Patológica , Proteínas Associadas à Matriz Nuclear/genética , Polimorfismo Genético , Estrutura Secundária de Proteína , RNA Helicases/genética , Proteínas de Ligação a RNA/genética , Receptor ErbB-4/genética , Ribonuclease Pancreático/genética
12.
Trends Microbiol ; 27(2): 148-163, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30224157

RESUMO

G-quadruplexes (G4s) are noncanonical nucleic acid secondary structures formed by guanine-rich DNA and RNA sequences. In this review we aim to provide an overview of the biological roles of G4s in microbial genomes with emphasis on recent discoveries. G4s are enriched and conserved in the regulatory regions of microbes, including bacteria, fungi, and viruses. Importantly, G4s in hepatitis B virus (HBV) and hepatitis C virus (HCV) genomes modulate genes crucial for virus replication. Recent studies on Epstein-Barr virus (EBV) shed light on the role of G4s within the microbial transcripts as cis-acting regulatory signals that modulate translation and facilitate immune evasion. Furthermore, G4s in microbial genomes have been linked to radioresistance, antigenic variation, recombination, and latency. G4s in microbial genomes represent novel therapeutic targets for antimicrobial therapy.


Assuntos
Quadruplex G , Genoma Microbiano , Variação Antigênica/genética , Bactérias/genética , Sequência de Bases , Proteínas de Transporte , Fungos/genética , Quadruplex G/efeitos dos fármacos , Quadruplex G/efeitos da radiação , Regulação da Expressão Gênica , Herpesvirus Humano 4/genética , Humanos , Edição de RNA , Tolerância a Radiação , Recombinação Genética , Vírion , Virulência , Montagem de Vírus , Latência Viral/genética , Replicação Viral/genética , Vírus/genética
13.
Sci Rep ; 7(1): 14371, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29085029

RESUMO

Chronic HBV infection is a major cause of hepatocellular carcinoma (HCC). The association between hepatitis B "e" antigen (HBeAg) and HCC is well-established by epidemiological studies. Nonetheless, the biological role of HBeAg in HCC remains enigmatic. We investigate the role of HBeAg in HBV-related HCC. Our findings suggest that HBeAg enhances cell proliferation and accelerates progression from G0/G1 phase to the S phase of the cell cycle in Huh7 cells. Examination of host gene expression and miRNA expression profiles reveals a total of 21 host genes and 12 host miRNAs that were differentially regulated in cells expressing HBeAg. Importantly, HBeAg induced the expression of miR-106b, an oncogenic miRNA. Interestingly, HBeAg-expression results in a significant reduction in the expression of retinoblastoma (Rb) gene, an experimentally validated target of miR-106b. Inhibition of miR-106b significantly increased the expression of the Rb gene, resulting in reduced cell proliferation and slowing of cell cycle progression from the G0/G1 phase to S phase. These observations suggest that the up-regulation of miR-106b by HBeAg contributes to the pathogenesis of HBV-related HCC by down-regulating the Rb gene. Our results highlight a role for HBeAg in HCC and provide a novel perspective on the molecular mechanisms underlying HBV-related HCC.


Assuntos
Carcinoma Hepatocelular/genética , Antígenos E da Hepatite B/genética , MicroRNAs/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Genes do Retinoblastoma/genética , Genes do Retinoblastoma/fisiologia , Células Hep G2 , Antígenos E da Hepatite B/metabolismo , Antígenos E da Hepatite B/fisiologia , Vírus da Hepatite B/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/fisiologia , Fase de Repouso do Ciclo Celular , Fase S , Transfecção , Regulação para Cima
14.
Nucleic Acids Res ; 45(19): 11268-11280, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28981800

RESUMO

HBV genotypes differ in pathogenicity. In addition, genotype-specific differences in the regulation of transcription and virus replication exist in HBV, but the underlying mechanisms are unknown. Here, we show the presence of a G-quadruplex motif in the promoter of the preS2/S gene; this G-quadruplex is highly conserved only in HBV genotype B but not in other HBV genotypes. We demonstrate that this G-quadruplex motif forms a hybrid intramolecular G-quadruplex structure. Interestingly, mutations disrupting the G-quadruplex in HBV genotype B reduced the preS2/S promoter activity, leading to reduced hepatitis B surface antigen (HBsAg) levels. G-quadruplex ligands stabilized the G-quadruplex in genotype B and enhanced the preS2/S promoter activity. Furthermore, mutations disrupting the G-quadruplex in the full-length HBV genotype B constructs were associated with impaired virion secretion. In contrast to typical G-quadruplexes within promoters which are negative regulators of transcription the G-quadruplex in the preS2/S promoter of HBV represents an unconventional positive regulatory element. Our findings highlight (a) G-quadruplex mediated enhancement of transcription and virion secretion in HBV and (b) a yet unknown role for DNA secondary structures in complex genotype-specific regulatory mechanisms in virus genomes.


Assuntos
Quadruplex G , Genes env/genética , Vírus da Hepatite B/genética , Regiões Promotoras Genéticas/genética , Vírion/genética , Sequência de Bases , Linhagem Celular Tumoral , Dicroísmo Circular , DNA Viral/química , DNA Viral/genética , DNA Viral/metabolismo , Genoma Viral/genética , Genótipo , Vírus da Hepatite B/metabolismo , Humanos , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica , Vírion/metabolismo , Replicação Viral/genética
15.
Sci Rep ; 7(1): 8162, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811638

RESUMO

The clinical course of HIV-1 varies greatly among infected individuals. Despite extensive research, virus factors associated with slow-progression remain poorly understood. Identification of unique HIV-1 genomic signatures linked to slow-progression remains elusive. We investigated CpG dinucleotide content in HIV-1 envelope gene as a potential virus factor in disease progression. We analysed 1808 HIV-1 envelope gene sequences from three independent longitudinal studies; this included 1280 sequences from twelve typical-progressors and 528 sequences from six slow-progressors. Relative abundance of CpG dinucleotides and relative synonymous codon usage (RSCU) for CpG-containing codons among HIV-1 envelope gene sequences from typical-progressors and slow-progressors were analysed. HIV-1 envelope gene sequences from slow-progressors have high-CpG dinucleotide content and increased number of CpG-containing codons as compared to typical-progressors. Our findings suggest that observed differences in CpG-content between typical-progressors and slow-progressors is not explained by differences in the mononucleotide content. Our results also highlight that the high-CpG content in HIV-1 envelope gene from slow-progressors is observed immediately after seroconversion. Thus CpG dinucleotide content of HIV-1 envelope gene is a potential virus-related factor that is linked to disease progression. The CpG dinucleotide content of HIV-1 envelope gene may help predict HIV-1 disease progression at early stages after seroconversion.


Assuntos
Composição de Bases , Fosfatos de Dinucleosídeos , Genes env , Infecções por HIV/virologia , HIV-1/genética , Códon , Progressão da Doença , Soropositividade para HIV/genética , Humanos , Prognóstico , Análise de Sequência de DNA
16.
PLoS One ; 10(11): e0142368, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26544572

RESUMO

BACKGROUND: Papillomaviruses and polyomaviruses are small ds-DNA viruses infecting a wide-range of vertebrate hosts. Evidence supporting co-evolution of the virus with the host does not fully explain the evolutionary path of papillomaviruses and polyomaviruses. Studies analyzing CpG dinucleotide frequencies in virus genomes have provided interesting insights on virus evolution. CpG dinucleotide depletion has not been extensively studied among papillomaviruses and polyomaviruses. We sought to analyze the relative abundance of dinucleotides and the relative roles of evolutionary pressures in papillomaviruses and polyomaviruses. METHODS: We studied 127 full-length sequences from papillomaviruses and 56 full-length sequences from polyomaviruses. We analyzed the relative abundance of dinucleotides, effective codon number (ENC), differences in synonymous codon usage. We examined the association, if any, between the extent of CpG dinucleotide depletion and the evolutionary lineage of the infected host. We also investigated the contribution of mutational pressure and translational selection to the evolution of papillomaviruses and polyomaviruses. RESULTS: All papillomaviruses and polyomaviruses are CpG depleted. Interestingly, the evolutionary lineage of the infected host determines the extent of CpG depletion among papillomaviruses and polyomaviruses. CpG dinucleotide depletion was more pronounced among papillomaviruses and polyomaviruses infecting human and other mammals as compared to those infecting birds. Our findings demonstrate that CpG depletion among papillomaviruses is linked to mutational pressure; while CpG depletion among polyomaviruses is linked to translational selection. We also present evidence that suggests methylation of CpG dinucleotides may explain, at least in part, the depletion of CpG dinucleotides among papillomaviruses but not polyomaviruses. CONCLUSIONS: The extent of CpG depletion among papillomaviruses and polyomaviruses is linked to the evolutionary lineage of the infected host. Our results highlight the existence of divergent evolutionary pressures leading to CpG dinucleotide depletion among small ds-DNA viruses infecting vertebrate hosts.


Assuntos
Ilhas de CpG/genética , Repetições de Dinucleotídeos/genética , Evolução Molecular , Papillomaviridae/genética , Polyomavirus/genética , Animais , Códon/genética , Metilação de DNA , Humanos , Mutação , Papillomaviridae/fisiologia , Polyomavirus/fisiologia
17.
J Virol ; 87(24): 13816-24, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24109231

RESUMO

Parvoviruses are rapidly evolving viruses that infect a wide range of hosts, including vertebrates and invertebrates. Extensive methylation of the parvovirus genome has been recently demonstrated. A global pattern of methylation of CpG dinucleotides is seen in vertebrate genomes, compared to "fractional" methylation patterns in invertebrate genomes. It remains unknown if the loss of CpG dinucleotides occurs in all viruses of a given DNA virus family that infect host species spanning across vertebrates and invertebrates. We investigated the link between the extent of CpG dinucleotide depletion among autonomous parvoviruses and the evolutionary lineage of the infected host. We demonstrate major differences in the relative abundance of CpG dinucleotides among autonomous parvoviruses which share similar genome organization and common ancestry, depending on the infected host species. Parvoviruses infecting vertebrate hosts had significantly lower relative abundance of CpG dinucleotides than parvoviruses infecting invertebrate hosts. The strong correlation of CpG dinucleotide depletion with the gain in TpG/CpA dinucleotides and the loss of TpA dinucleotides among parvoviruses suggests a major role for CpG methylation in the evolution of parvoviruses. Our data present evidence that links the relative abundance of CpG dinucleotides in parvoviruses to the methylation capabilities of the infected host. In sum, our findings support a novel perspective of host-driven evolution among autonomous parvoviruses.


Assuntos
Fosfatos de Dinucleosídeos/genética , Evolução Molecular , Interações Hospedeiro-Patógeno , Invertebrados/virologia , Infecções por Parvoviridae/veterinária , Infecções por Parvoviridae/virologia , Parvovirus/genética , Vertebrados/virologia , Animais , Metilação de DNA , Fosfatos de Dinucleosídeos/metabolismo , Genoma Viral , Humanos , Invertebrados/genética , Invertebrados/metabolismo , Metilação , Dados de Sequência Molecular , Infecções por Parvoviridae/genética , Infecções por Parvoviridae/metabolismo , Parvovirus/classificação , Parvovirus/fisiologia , Filogenia , Vertebrados/genética , Vertebrados/metabolismo
18.
Pharmacol Ther ; 137(3): 318-30, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23159371

RESUMO

Several decades ago, Otto Warburg discovered that cancer cells produce energy predominantly by glycolysis; a phenomenon now termed "Warburg effect". Warburg linked mitochondrial respiratory defects in cancer cells to aerobic glycolysis; this theory of his gradually lost its importance with the lack of conclusive evidence confirming the presence of mitochondrial defects in cancer cells. Scientists began to believe that this altered mechanism of energy production in cancer cells was more of an effect than the cause. More than 50 years later, the clinical use of FDG-PET imaging in the diagnosis and monitoring of cancers rekindled the interest of the scientific community in Warburg's hypothesis. In the last ten years considerable progress in the field has advanced our understanding of the Warburg effect. However, it still remains unclear if the Warburg effect plays a causal role in cancers or it is an epiphenomenon in tumorigenesis. In this review we aim to discuss the molecular mechanisms associated with the Warburg effect with emphasis on recent advances in the field including the role of epigenetic changes, miRNAs and post-translational modification of proteins. In addition, we also discuss emerging therapeutic strategies that target the dependence of cancer cells on altered energy processing through aerobic glycolysis.


Assuntos
Glicólise , Neoplasias/metabolismo , Animais , Humanos , Neoplasias/genética , Neoplasias/terapia
19.
Clin Microbiol Rev ; 25(1): 142-63, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22232374

RESUMO

Chronic hepatitis B virus (HBV) infection is a complex clinical entity frequently associated with cirrhosis and hepatocellular carcinoma (HCC). The persistence of HBV genomes in the absence of detectable surface antigenemia is termed occult HBV infection. Mutations in the surface gene rendering HBsAg undetectable by commercial assays and inhibition of HBV by suppression of viral replication and viral proteins represent two fundamentally different mechanisms that lead to occult HBV infections. The molecular mechanisms underlying occult HBV infections, including recently identified mechanisms associated with the suppression of HBV replication and inhibition of HBV proteins, are reviewed in detail. The availability of highly sensitive molecular methods has led to increased detection of occult HBV infections in various clinical settings. The clinical relevance of occult HBV infection and the utility of appropriate diagnostic methods to detect occult HBV infection are discussed. The need for specific guidelines on the diagnosis and management of occult HBV infection is being increasingly recognized; the aspects of mechanistic studies that warrant further investigation are discussed in the final section.


Assuntos
DNA Viral/sangue , Antígenos de Superfície da Hepatite B/sangue , Vírus da Hepatite B/patogenicidade , Hepatite B Crônica/patologia , Hepatite B Crônica/virologia , Interações Hospedeiro-Patógeno , Hepatite B Crônica/diagnóstico , Hepatite B Crônica/epidemiologia , Humanos
20.
Mod Pathol ; 24(3): 390-5, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21113139

RESUMO

Fibrolamellar carcinomas are a unique type of liver carcinoma that arise in non-cirrhotic livers of young individuals. Despite their distinctive appearance, recent studies have demonstrated a lack of consistency in how fibrolamellar carcinomas are diagnosed by pathologists. As a potential aide in diagnosis, we investigated the staining properties of CD68. The CD68 gene encodes for a transmembrane glycoprotein located within lysosomes and endosomes. Macrophages as well as other cell types rich in lysosomes/endosomes are CD68 positive. Cases of fibrolamellar carcinoma were collected from four academic centers. Control groups included hepatocellular carcinomas arising in both non-cirrhotic livers and cirrhotic livers. A group of cholangiocarcinomas were also stained. CD68 immunostaining was scored for both intensity and distribution on a scale of 0 to 3+. Twenty-three primary fibrolamellar carcinomas and 9 metastases (total of 24 individuals) were immunostained and showed a distinctive granular, dot-like or stippled pattern of cytoplasmic staining in nearly all cases (31/32), with a median distribution and intensity score of 3+. In control hepatocellular carcinomas that arose in non-cirrhotic livers, 10/39 showed CD68 staining with a median distribution and intensity score of 2+. In hepatocellular carcinomas arising in cirrhotic livers, 3/27 cases showed CD68 positivity, all with stippled dot-like cytoplasmic staining similar to that of fibrolamellar carcinomas. All five cholangiocarcinomas were negative. Overall, CD68 positivity was strongly associated with fibrolamellar carcinomas, P<0.001 and had a sensitivity of 96%, a specificity of 80%, and a negative predictive value of 98%. In sum, tumor positivity for CD68 staining was highly sensitive for fibrolamellar carcinoma and a lack of CD68 staining should suggest caution in making a diagnosis of fibrolamellar carcinoma.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Hepáticas/metabolismo , Adulto , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Feminino , Humanos , Cirrose Hepática/complicações , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA