Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diagn Interv Imaging ; 104(5): 243-247, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36681532

RESUMO

PURPOSE: The purpose of this study was to develop a method for generating synthetic MR images of macrotrabecular-massive hepatocellular carcinoma (MTM-HCC). MATERIALS AND METHODS: A set of abdominal MR images including fat-saturated T1-weighted images obtained during the arterial and portal venous phases of enhancement and T2-weighted images of 91 patients with MTM-HCC, and another set of MR abdominal images from 67 other patients were used. Synthetic images were obtained using a 3-step pipeline that consisted in: (i), generating a synthetic MTM-HCC tumor on a neutral background; (ii), randomly selecting a background among the 67 patients and a position inside the liver; and (iii), merging the generated tumor in the background at the specified location. Synthetic images were qualitatively evaluated by three radiologists and quantitatively assessed using a mix of 1-nearest neighbor classifier metric and Fréchet inception distance. RESULTS: A set of 1000 triplets of synthetic MTM-HCC images with consistent contrasts were successfully generated. Evaluation of selected synthetic images by three radiologists showed that the method gave realistic, consistent and diversified images. Qualitative and quantitative evaluation led to an overall score of 0.64. CONCLUSION: This study shows the feasibility of generating realistic synthetic MR images with very few training data, by leveraging the wide availability of liver backgrounds. Further studies are needed to assess the added value of those synthetic images for automatic diagnosis of MTM-HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Imageamento por Ressonância Magnética/métodos , Meios de Contraste
2.
Eur Radiol ; 32(7): 4780-4790, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35142898

RESUMO

OBJECTIVE: This study aimed to develop and investigate the performance of a deep learning model based on a convolutional neural network (CNN) for the automatic segmentation of polycystic livers at CT imaging. METHOD: This retrospective study used CT images of polycystic livers. To develop the CNN, supervised training and validation phases were performed using 190 CT series. To assess performance, the test phase was performed using 41 CT series. Manual segmentation by an expert radiologist (Rad1a) served as reference for all comparisons. Intra-observer variability was determined by the same reader after 12 weeks (Rad1b), and inter-observer variability by a second reader (Rad2). The Dice similarity coefficient (DSC) evaluated overlap between segmentations. CNN performance was assessed using the concordance correlation coefficient (CCC) and the two-by-two difference between the CCCs; their confidence interval was estimated with bootstrap and Bland-Altman analyses. Liver segmentation time was automatically recorded for each method. RESULTS: A total of 231 series from 129 CT examinations on 88 consecutive patients were collected. For the CNN, the DSC was 0.95 ± 0.03 and volume analyses yielded a CCC of 0.995 compared with reference. No statistical difference was observed in the CCC between CNN automatic segmentation and manual segmentations performed to evaluate inter-observer and intra-observer variability. While manual segmentation required 22.4 ± 10.4 min, central and graphics processing units took an average of 5.0 ± 2.1 s and 2.0 ± 1.4 s, respectively. CONCLUSION: Compared with manual segmentation, automated segmentation of polycystic livers using a deep learning method achieved much faster segmentation with similar performance. KEY POINTS: • Automatic volumetry of polycystic livers using artificial intelligence method allows much faster segmentation than expert manual segmentation with similar performance. • No statistical difference was observed between automatic segmentation, inter-observer variability, or intra-observer variability.


Assuntos
Aprendizado Profundo , Inteligência Artificial , Humanos , Processamento de Imagem Assistida por Computador/métodos , Fígado/diagnóstico por imagem , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
3.
Eur Radiol ; 32(6): 4292-4303, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35029730

RESUMO

OBJECTIVES: To compare the lung CT volume (CTvol) and pulmonary function tests in an interstitial lung disease (ILD) population. Then to evaluate the CTvol loss between idiopathic pulmonary fibrosis (IPF) and non-IPF and explore a prognostic value of annual CTvol loss in IPF. METHODS: We conducted in an expert center a retrospective study between 2005 and 2018 on consecutive patients with ILD. CTvol was measured automatically using commercial software based on a deep learning algorithm. In the first group, Spearman correlation coefficients (r) between forced vital capacity (FVC), total lung capacity (TLC), and CTvol were calculated. In a second group, annual CTvol loss was calculated using linear regression analysis and compared with the Mann-Whitney test. In a last group of IPF patients, annual CTvol loss was calculated between baseline and 1-year CTs for investigating with the Youden index a prognostic value of major adverse event at 3 years. Univariate and log-rank tests were calculated. RESULTS: In total, 560 patients (4610 CTs) were analyzed. For 1171 CTs, CTvol was correlated with FVC (r: 0.86) and TLC (r: 0.84) (p < 0.0001). In 408 patients (3332 CT), median annual CTvol loss was 155.7 mL in IPF versus 50.7 mL in non-IPF (p < 0.0001) over 5.03 years. In 73 IPF patients, a relative annual CTvol loss of 7.9% was associated with major adverse events (log-rank, p < 0.0001) in univariate analysis (p < 0.001). CONCLUSIONS: Automated lung CT volume may be an alternative or a complementary biomarker to pulmonary function tests for the assessment of lung volume loss in ILD. KEY POINTS: • There is a good correlation between lung CT volume and forced vital capacity, as well as for with total lung capacity measurements (r of 0.86 and 0.84 respectively, p < 0.0001). • Median annual CT volume loss is significantly higher in patients with idiopathic pulmonary fibrosis than in patients with other fibrotic interstitial lung diseases (155.7 versus 50.7 mL, p < 0.0001). • In idiopathic pulmonary fibrosis, a relative annual CT volume loss higher than 9.4% is associated with a significantly reduced mean survival time at 2.0 years versus 2.8 years (log-rank, p < 0.0001).


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Humanos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Medidas de Volume Pulmonar , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Capacidade Vital
4.
Eur Radiol ; 32(5): 3248-3259, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35001157

RESUMO

OBJECTIVE: To train and to test for prostate zonal segmentation an existing algorithm already trained for whole-gland segmentation. METHODS: The algorithm, combining model-based and deep learning-based approaches, was trained for zonal segmentation using the NCI-ISBI-2013 dataset and 70 T2-weighted datasets acquired at an academic centre. Test datasets were randomly selected among examinations performed at this centre on one of two scanners (General Electric, 1.5 T; Philips, 3 T) not used for training. Automated segmentations were corrected by two independent radiologists. When segmentation was initiated outside the prostate, images were cropped and segmentation repeated. Factors influencing the algorithm's mean Dice similarity coefficient (DSC) and its precision were assessed using beta regression. RESULTS: Eighty-two test datasets were selected; one was excluded. In 13/81 datasets, segmentation started outside the prostate, but zonal segmentation was possible after image cropping. Depending on the radiologist chosen as reference, algorithm's median DSCs were 96.4/97.4%, 91.8/93.0% and 79.9/89.6% for whole-gland, central gland and anterior fibromuscular stroma (AFMS) segmentations, respectively. DSCs comparing radiologists' delineations were 95.8%, 93.6% and 81.7%, respectively. For all segmentation tasks, the scanner used for imaging significantly influenced the mean DSC and its precision, and the mean DSC was significantly lower in cases with initial segmentation outside the prostate. For central gland segmentation, the mean DSC was also significantly lower in larger prostates. The radiologist chosen as reference had no significant impact, except for AFMS segmentation. CONCLUSIONS: The algorithm performance fell within the range of inter-reader variability but remained significantly impacted by the scanner used for imaging. KEY POINTS: • Median Dice similarity coefficients obtained by the algorithm fell within human inter-reader variability for the three segmentation tasks (whole gland, central gland, anterior fibromuscular stroma). • The scanner used for imaging significantly impacted the performance of the automated segmentation for the three segmentation tasks. • The performance of the automated segmentation of the anterior fibromuscular stroma was highly variable across patients and showed also high variability across the two radiologists.


Assuntos
Aprendizado Profundo , Próstata , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pelve , Próstata/diagnóstico por imagem
5.
Int J Comput Assist Radiol Surg ; 16(10): 1699-1709, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34363582

RESUMO

PURPOSE: Recently, machine learning has outperformed established tools for automated segmentation in medical imaging. However, segmentation of cardiac chambers still proves challenging due to the variety of contrast agent injection protocols used in clinical practice, inducing disparities of contrast between cavities. Hence, training a generalist network requires large training datasets representative of these protocols. Furthermore, segmentation on unenhanced CT scans is further hindered by the challenge of obtaining ground truths from these images. Newly available spectral CT scanners allow innovative image reconstructions such as virtual non-contrast (VNC) imaging, mimicking non-contrasted conventional CT studies from a contrasted scan. Recent publications have demonstrated that networks can be trained using VNC to segment contrasted and unenhanced conventional CT scans to reduce annotated data requirements and the need for annotations on unenhanced scans. We propose an extensive evaluation of this statement. METHOD: We undertake multiple trainings of a 3D multi-label heart segmentation network with (HU-VNC) and without (HUonly) VNC as augmentation, using decreasing training dataset sizes (114, 76, 57, 38, 29, 19 patients). At each step, both networks are tested on a multi-vendor, multi-centric dataset of 122 patients, including different protocols: pulmonary embolism (PE), chest-abdomen-pelvis (CAP), heart CT angiography (CTA) and true non-contrast scans (TNC). An in-depth comparison of resulting Dice coefficients and distance metrics is performed for the networks trained on the largest dataset. RESULTS: HU-VNC-trained on 57 patients significantly outperforms HUonly trained on 114 regarding CAP and TNC scans (mean Dice coefficients of 0.881/0.835 and 0.882/0.416, respectively). When trained on the largest dataset, significant improvements in all labels are noted for TNC and CAP scans (mean Dice coefficient of 0.882/0.416 and 0.891/0.835, respectively). CONCLUSION: Adding VNC images as training augmentation allows the network to perform on unenhanced scans and improves segmentations on other imaging protocols, while using a reduced training dataset.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Angiografia por Tomografia Computadorizada , Coração , Humanos , Tórax
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA