Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 145: 107231, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394919

RESUMO

The binding of human galectins by glycomimetic inhibitors is a promising therapeutic approach. The structurally distinct group of tandem-repeat galectins has scarcely been studied so far, and there is hardly any knowledge on their ligand specificity or their inhibitory potential, particularly concerning non-natural carbohydrates. Here, we present the synthesis of a library of seven 3-O-disubstituted thiodigalactoside-derived glycomimetics and their affinity to two tandem-repeat galectins, Gal-8 and Gal-9. The straightforward synthesis of these glycomimetics involved dibutyltin oxide-catalyzed 3,3́-O-disubstitution of commercially available unprotected thiodigalactoside, and conjugation of various aryl substituents by copper-catalyzed Huisgen azide-alkyne cycloaddition (CuAAC). The inhibitory potential of the prepared glycomimetics for Gal-8 and Gal-9 was assessed, and compared with the established galectins Gal-1 and Gal-3. The introduction of C-3 substituents resulted in an over 40-fold increase in affinity compared with unmodified TDG. The structure-affinity relations within the studied series were discussed using molecular modeling. Furthermore, the prepared glycomimetics were shown to scavenge Gal-8 and Gal-9 from the surface of cancer cells. This pioneering study on the synthetic inhibitors especially of Gal-9 identified lead compounds that may be used in further biomedical research.


Assuntos
Galectinas , Tiogalactosídeos , Humanos , Ligação Proteica , Galectinas/metabolismo , Tiogalactosídeos/química , Carboidratos/química
2.
Chem Commun (Camb) ; 59(69): 10404-10407, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37551910

RESUMO

Elevated levels of galectin-3 are associated with tumorigenesis. Its inhibition with high-affinity carbohydrate ligands opens new therapeutic routes. Targeting of intracellular galectin-3 is challenging for polar inhibitors like carbohydrates. We demonstrate the potential of novel biomedical research tools, glycocalix[4]arenes, to enter epithelial cells, which may allow their interaction with galectin-3.


Assuntos
Galectina 3 , Glicocálix , Galectinas , Carboidratos/farmacologia , Membrana Celular
3.
J Med Chem ; 65(5): 3866-3878, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35157467

RESUMO

Galectin-3 (Gal-3) participates in many cancer-related metabolic processes. The inhibition of overexpressed Gal-3 by, e.g., ß-galactoside-derived inhibitors is hence promising for cancer treatment. The multivalent presentation of such inhibitors on a suitable biocompatible carrier can enhance the overall affinity to Gal-3 and favorably modify the interaction with Gal-3-overexpressing cells. We synthesized a library of C-3 aryl-substituted thiodigalactoside inhibitors and their multivalent N-(2-hydroxypropyl)methacrylamide (HPMA)-based counterparts with two different glycomimetic contents. Glycopolymers with a higher content of glycomimetic exhibited a higher affinity to Gal-3 as assessed by ELISA and biolayer interferometry. Among them, four candidates (with 4-acetophenyl, 4-cyanophenyl, 4-fluorophenyl, and thiophen-3-yl substitution) were selected for further evaluation in cancer-related experiments in cell cultures. These glycopolymers inhibited Gal-3-induced processes in cancer cells. The cyanophenyl-substituted glycopolymer exhibited the strongest antiproliferative, antimigratory, antiangiogenic, and immunoprotective properties. The prepared glycopolymers appear to be prospective modulators of the tumor microenvironment applicable in the therapy of Gal-3-associated cancers.


Assuntos
Galectina 3 , Tiogalactosídeos , Galectina 3/metabolismo , Estudos Prospectivos , Tiogalactosídeos/farmacologia
4.
Int J Mol Sci ; 22(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34067978

RESUMO

Galectin-3 (Gal-3) is a ß-galactoside-binding protein that influences various cell functions, including cell adhesion. We focused on the role of Gal-3 as an extracellular ligand mediating cell-matrix adhesion. We used human adipose tissue-derived stem cells and human umbilical vein endothelial cells that are promising for vascular tissue engineering. We found that these cells naturally contained Gal-3 on their surface and inside the cells. Moreover, they were able to associate with exogenous Gal-3 added to the culture medium. This association was reduced with a ß-galactoside LacdiNAc (GalNAcß1,4GlcNAc), a selective ligand of Gal-3, which binds to the carbohydrate recognition domain (CRD) in the Gal-3 molecule. This ligand was also able to detach Gal-3 newly associated with cells but not Gal-3 naturally present on cells. In addition, Gal-3 preadsorbed on plastic surfaces acted as an adhesion ligand for both cell types, and the cell adhesion was resistant to blocking with LacdiNAc. This result suggests that the adhesion was mediated by a binding site different from the CRD. The blocking of integrin adhesion receptors on cells with specific antibodies revealed that the cell adhesion to the preadsorbed Gal-3 was mediated, at least partially, by ß1 and αV integrins-namely α5ß1, αVß3, and αVß1 integrins.


Assuntos
Proteínas Sanguíneas/metabolismo , Adesão Celular , Junções Célula-Matriz/metabolismo , Galectinas/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Integrinas/metabolismo , Células-Tronco Mesenquimais/fisiologia , Sítios de Ligação , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Ligação Proteica
5.
Eur J Med Chem ; 220: 113500, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33962190

RESUMO

Galectin-3 plays a crucial role in cancerogenesis; its targeting is a prospective pathway in cancer diagnostics and therapy. Multivalent presentation of glycans was shown to strongly increase the affinity of glycoconjugates to galectin-3. Further strengthening of interaction with galectin-3 may be accomplished using artificial glycomimetics with apt aryl substitutions. We established a new, as yet undescribed chemoenzymatic method to produce selective C-3-substituted N,N'-diacetyllactosamine glycomimetics and coupled them to human serum albumin. From a library of enzymes, only ß-N-acetylhexosaminidase from Talaromyces flavus was able to efficiently synthesize the C-3-propargylated disaccharide. Various aryl residues were attached to the functionalized N,N'-diacetyllactosamine via click chemistry to assess the impact of the aromatic substitution. In ELISA-type assays with galectin-3, free glycomimetics exhibited up to 43-fold stronger inhibitory potency to Gal-3 than the lactose standard. Coupling to human serum albumin afforded multivalent neo-glycoproteins with up to 4209-fold increased inhibitory potency per glycan compared to the monovalent lactose standard. Surface plasmon resonance brought further information on the kinetics of galectin-3 inhibition. The potential of prepared neo-glycoproteins to target galectin-3 was demonstrated on colorectal adenocarcinoma DLD-1 cells. We investigated the uptake of neo-glycoproteins into cells and observed limited non-specific transport into the cytoplasm. Therefore, neo-glycoproteins primarily act as efficient scavengers of exogenous galectin-3 of cancer cells, inhibiting its interaction with the cell surface, and protecting T-lymphocytes against galectin-3-induced apoptosis. The present neo-glycoproteins combine the advantage of a straightforward synthesis, selectivity, non-toxicity, and high efficiency for targeting exogenous galectin-3, with possible application in the immunomodulatory treatment of galectin-3-overexpressing cancers.


Assuntos
Materiais Biomiméticos/farmacologia , Proteínas Sanguíneas/antagonistas & inibidores , Galectinas/antagonistas & inibidores , Glicoproteínas/metabolismo , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Relação Dose-Resposta a Droga , Galectinas/genética , Galectinas/metabolismo , Glicoproteínas/química , Humanos , Cinética , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA