Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cancers (Basel) ; 16(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38339228

RESUMO

Despite recent advances in cancer therapy, ovarian cancer remains the most lethal gynecological cancer worldwide, making it crucial and of the utmost importance to establish novel therapeutic strategies. Adjuvant radiotherapy has been assessed historically, but its use was limited by intestinal toxicity. We recently established the role of Limosilactobacillus reuteri in releasing IL-22 (LR-IL-22) as an effective radiation mitigator, and we have now assessed its effect in an ovarian cancer mouse model. We hypothesized that an LR-IL-22 gavage would enable intestinal radioprotection by modifying the tumor microenvironment and, subsequently, improving overall survival in female C57BL/6MUC-1 mice with widespread abdominal syngeneic 2F8cis ovarian cancer. Herein, we report that the LR-IL-22 gavage not only improved overall survival in mice when combined with a PD-L1 inhibitor by inducing differential gene expression in irradiated stem cells but also induced PD-L1 protein expression in ovarian cancer cells and mobilized CD8+ T cells in whole abdomen irradiated mice. The addition of LR-IL-22 to a combined treatment modality with fractionated whole abdomen radiation (WAI) and systemic chemotherapy and immunotherapy regimens can facilitate a safe and effective protocol to reduce tumor burden, increase survival, and improve the quality of life of a locally advanced ovarian cancer patient.

2.
Oncoimmunology ; 12(1): 2198185, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37066116

RESUMO

The tumor microenvironment (TME) in ovarian cancer (OC) is characterized by immune suppression, due to an abundance of suppressive immune cells populations. To effectively enhance the activity of immune checkpoint inhibition (ICI), there is a need to identify agents that target these immunosuppressive networks while promoting the recruitment of effector T cells into the TME. To this end, we sought to investigate the effect of the immunomodulatory cytokine IL12 alone or in combination with dual-ICI (anti-PD1 + anti-CTLA4) on anti-tumor activity and survival, using the immunocompetent ID8-VEGF murine OC model. Detailed immunophenotyping of peripheral blood, ascites, and tumors revealed that durable treatment responses were associated with reversal of myeloid cell-induced immune suppression, which resulted in enhanced anti-tumor activity by T cells. Single cell transcriptomic analysis further demonstrated striking differences in the phenotype of myeloid cells from mice treated with IL12 in combination with dual-ICI. We also identified marked differences in treated mice that were in remission compared to those whose tumors progressed, further confirming a pivotal role for the modulation of myeloid cell function to allow for response to immunotherapy. These findings provide the scientific basis for the combination of IL12 and ICI to improve clinical response in OC.


Assuntos
Carcinoma Epitelial do Ovário , Imunoterapia , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Carcinoma Epitelial do Ovário/tratamento farmacológico , Terapia de Imunossupressão , Imunoterapia/métodos , Interleucina-12/farmacologia , Interleucina-12/uso terapêutico , Células Mieloides/patologia , Neoplasias Ovarianas/tratamento farmacológico , Microambiente Tumoral
3.
Cancers (Basel) ; 15(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36980556

RESUMO

Irradiation can be an effective treatment for ovarian cancer, but its use is limited by intestinal toxicity. Thus, strategies to mitigate toxicity are important and can revitalize the current standard of care. We previously established that LR-IL-22 protects the intestine from WAI. We now hypothesize that LR-IFN-ß is an effective radiation protector and mitigator and is rapidly cleared from the digestive tract, making it an option for intestinal radioprotection. We report that the gavage of LR-IFN-ß during WAI provides improved intestinal barrier integrity and significantly preserves the numbers of Lgr5+GFP+ intestinal stem cells, improving survival. The rapid clearance of the genetically engineered probiotic from the digestive tract renders it a safe and feasible radiation mitigator. Therefore, the above genetically engineered probiotic is both a feasible and effective radiation mitigator that could potentially revolutionize the management of OC patients. Furthermore, the subsequent addition of platinum/taxane-based chemotherapy to the combination of WAI and LR-IFN-ß should reduce tumor volume while protecting the intestine and should improve the overall survival in OC patients.

4.
Clin Cancer Res ; 29(10): 1969-1983, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36795892

RESUMO

PURPOSE: We recently reported that the transcription factor NFATC4, in response to chemotherapy, drives cellular quiescence to increase ovarian cancer chemoresistance. The goal of this work was to better understand the mechanisms of NFATC4-driven ovarian cancer chemoresistance. EXPERIMENTAL DESIGN: We used RNA sequencing to identify NFATC4-mediated differential gene expression. CRISPR-Cas9 and FST (follistatin)-neutralizing antibodies were used to assess impact of loss of FST function on cell proliferation and chemoresistance. ELISA was used to quantify FST induction in patient samples and in vitro in response to chemotherapy. RESULTS: We found that NFATC4 upregulates FST mRNA and protein expression predominantly in quiescent cells and FST is further upregulated following chemotherapy treatment. FST acts in at least a paracrine manner to induce a p-ATF2-dependent quiescent phenotype and chemoresistance in non-quiescent cells. Consistent with this, CRISPR knockout (KO) of FST in ovarian cancer cells or antibody-mediated neutralization of FST sensitizes ovarian cancer cells to chemotherapy treatment. Similarly, CRISPR KO of FST in tumors increased chemotherapy-mediated tumor eradication in an otherwise chemotherapy-resistant tumor model. Suggesting a role for FST in chemoresistance in patients, FST protein in the abdominal fluid of patients with ovarian cancer significantly increases within 24 hours of chemotherapy exposure. FST levels decline to baseline levels in patients no longer receiving chemotherapy with no evidence of disease. Furthermore, elevated FST expression in patient tumors is correlated with poor progression-free, post-progression-free, and overall survival. CONCLUSIONS: FST is a novel therapeutic target to improve ovarian cancer response to chemotherapy and potentially reduce recurrence rates.


Assuntos
Folistatina , Neoplasias Ovarianas , Humanos , Feminino , Folistatina/genética , Folistatina/metabolismo , Folistatina/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proliferação de Células , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética
5.
Cancers (Basel) ; 14(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36428740

RESUMO

The immune tumor microenvironment (TME) of epithelial ovarian cancer (EOC) carries both effector and suppressive functions. To define immune correlates of chemotherapy-induced tumor involution, we performed longitudinal evaluation of biomarker expression on serial biological specimens collected during intraperitoneal (IP) platinum-based chemotherapy. Serial biological samples were collected at several time points during IP chemotherapy. RNA from IP fluid cells and tumor tissue was analyzed via NanoString. Meso Scale Discovery (MSD) multiplex assay and ELISA for MUC1 antibodies were performed on plasma and IP fluid. Differentially expressed genes in IP fluid demonstrate an upregulation of B cell function and activation of Th2 immune response along with dampening of Th1 immunity during chemotherapy. MSD analysis of IP fluid and gene expression analysis of tumor tissue revealed activation of Th2 immunity and the complement system. Anti-MUC1 antibodies were detected in IP fluid samples. IP fluid analysis in a secondary cohort also identified chemotherapy-induced B cell function genes. This study shows that serial IP fluid sampling is an effective method to capture changes in the immune TME during chemotherapy and reveals treatment induced changes in B cell function and Th2 immunity.

6.
Cancer Res ; 82(24): 4680-4693, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36219681

RESUMO

Ovarian clear cell carcinoma (OCCC) is a deadly and treatment-resistant cancer, which arises within the unique microenvironment of endometriosis. In this study, we identified a subset of endometriosis-derived mesenchymal stem cells (enMSC) characterized by loss of CD10 expression that specifically support OCCC growth. RNA sequencing identified alterations in iron export in CD10-negative enMSCs and reciprocal changes in metal transport in cocultured OCCC cells. CD10-negative enMSCs exhibited elevated expression of iron export proteins hephaestin and ferroportin and donate iron to associated OCCCs, functionally increasing the levels of labile intracellular iron. Iron is necessary for OCCC growth, and CD10-negative enMSCs prevented the growth inhibitory effects of iron chelation. In addition, enMSC-mediated increases in OCCC iron resulted in a unique sensitivity to ferroptosis. In vitro and in vivo, treatment with the ferroptosis inducer erastin resulted in significant death of cancer cells grown with CD10-negative enMSCs. Collectively, this work describes a novel mechanism of stromal-mediated tumor support via iron donation. This work also defines an important role of endometriosis-associated MSCs in supporting OCCC growth and identifies a critical therapeutic vulnerability of OCCC to ferroptosis based on stromal phenotype. SIGNIFICANCE: Endometriosis-derived mesenchymal stem cells support ovarian clear cell carcinoma via iron donation necessary for cancer growth, which also confers sensitivity to ferroptosis-inducing therapy.


Assuntos
Adenocarcinoma de Células Claras , Endometriose , Células-Tronco Mesenquimais , Neoplasias Ovarianas , Humanos , Feminino , Endometriose/metabolismo , Endometriose/patologia , Neoplasias Ovarianas/patologia , Ferro , Adenocarcinoma de Células Claras/metabolismo , Células-Tronco Mesenquimais/metabolismo , Microambiente Tumoral
7.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628427

RESUMO

(1) Background: The systemic administration of therapeutic agents to the intestine including cytokines, such as Interleukin-22 (IL-22), is compromised by damage to the microvasculature 24 hrs after total body irradiation (TBI). At that time, there is significant death of intestinal microvascular endothelial cells and destruction of the lamina propria, which limits drug delivery through the circulation, thus reducing the capacity of therapeutics to stabilize the numbers of Lgr5+ intestinal crypt stem cells and their progeny, and improve survival. By its direct action on intestinal stem cells and their villus regeneration capacity, IL-22 is both an ionizing irradiation protector and mitigator. (2) Methods: To improve delivery of IL-22 to the irradiated intestine, we gavaged Lactobacillus-reuteri as a platform for the second-generation probiotic Lactobacillus-reuteri-Interleukin-22 (LR-IL-22). (3) Results: There was effective radiation mitigation by gavage of LR-IL-22 at 24 h after intestinal irradiation. Multiple biomarkers of radiation damage to the intestine, immune system and bone marrow were improved by LR-IL-22 compared to the gavage of control LR or intraperitoneal injection of IL-22 protein. (4) Conclusions: Oral administration of LR-IL-22 is an effective protector and mitigator of intestinal irradiation damage.


Assuntos
Limosilactobacillus reuteri , Probióticos , Proteção Radiológica , Células Endoteliais , Interleucinas , Mucosa Intestinal/metabolismo , Intestinos , Interleucina 22
8.
Radiat Res ; 198(1): 89-105, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35446961

RESUMO

Oral administration (gavage) of a second-generation probiotic, Lactobacillus reuteri (L. reuteri), that releases interleukin-22 (LR-IL-22) at 24 h after total-body irradiation (TBI) mitigates damage to the intestine. We determined that LR-IL-22 also mitigates partial-body irradiation (PBI) and whole-abdomen irradiation (WAI). Irradiation can be an effective treatment for ovarian cancer, but its use is limited by intestinal toxicity. Strategies to mitigate toxicity are important and can revitalize this modality to treat ovarian cancer. In the present studies, we evaluated whether LR-IL-22 facilitates fractionated WAI in female C57BL/6 mice with disseminated ovarian cancer given a single fraction of either 15.75 Gy or 19.75 Gy or 4 daily fractions of 6 Gy or 6.5 Gy. Mice receiving single or multiple administrations of LR-IL-22 during WAI showed improved intestinal barrier integrity (P = 0.0167), reduced levels of radiation-induced intestinal cytokines including KC/CXCL1 (P = 0.002) and IFN-γ (P = 0.0024), and reduced levels of plasma, Eotaxin/CCL11 (P = 0.0088). LR-IL-22 significantly preserved the numbers of Lgr5+GFP+ intestinal stem cells (P = 0.0010) and improved survival (P < 0.0343). Female C57BL/6MUC-1 mice with widespread abdominal syngeneic 2F8cis ovarian cancer that received LR-IL-22 during 6.5 Gy WAI in 4 fractions had reduced tumor burden, less intestinal toxicity, and improved 30-day survival. Furthermore, LR-IL-22 facilitated WAI when added to Paclitaxel and Carboplatin chemotherapy and further increased survival. Oral administration (gavage) of LR-IL-22 is a potentially valuable intestinal radioprotector, which can facilitate therapeutic WAI for widespread intra-abdominal ovarian cancer.


Assuntos
Limosilactobacillus reuteri , Neoplasias Ovarianas , Abdome , Animais , Carcinoma Epitelial do Ovário , Feminino , Humanos , Interleucinas , Intestinos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/radioterapia , Interleucina 22
9.
Clin Cancer Res ; 28(10): 2038-2049, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35046055

RESUMO

PURPOSE: Increased prevalence of cytotoxic T lymphocytes (CTL) in the tumor microenvironment (TME) predicts positive outcomes in patients with epithelial ovarian cancer (EOC), whereas the regulatory T cells (Treg) predict poor outcomes. Guided by the synergistic activity of TLR3 ligands, IFNα, and COX-2 blockers in selectively enhancing CTL-attractants but suppressing Treg-attractants, we tested a novel intraperitoneal chemoimmunotherapy combination (CITC), to assess its tolerability and TME-modulatory impact in patients with recurrent EOC. PATIENTS AND METHODS: Twelve patients were enrolled in phase I portion of the trial NCT02432378, and treated with intraperitoneal cisplatin, intraperitoneal rintatolimod (dsRNA, TLR3 ligand), and oral celecoxib (COX-2 blocker). Patients in cohorts 2, 3, and 4 also received intraperitoneal IFNα at 2, 6, and 18 million units (MU), respectively. Primary objectives were to evaluate safety, identify phase 2 recommended dose (P2RD), and characterize changes in the immune TME. Peritoneal resident cells and intraperitoneal wash fluid were profiled via NanoString and Meso Scale Discovery (MSD) multiplex assay, respectively. RESULTS: The P2RD of IFNα was 6 MU. Median progression-free survival and overall survival were 8.4 and 30 months, respectively. Longitudinal sampling of the peritoneal cavity via intraperitoneal washes demonstrated local upregulation of IFN-stimulated genes (ISG), including CTL-attracting chemokines (CXCL-9, -10, -11), MHC I/II, perforin, and granzymes. These changes were present 2 days after chemokine modulation and subsided within 1 week. CONCLUSIONS: The chemokine-modulating intraperitoneal-CITC is safe, tolerable, and associated with ISG changes that favor CTL chemoattraction and function. This combination (plus DC vaccine) will be tested in a phase II trial. See related commentary by Aranda et al., p. 1993.


Assuntos
Neoplasias Ovarianas , Receptor 3 Toll-Like , Carcinoma Epitelial do Ovário/tratamento farmacológico , Quimiocinas , Ciclo-Oxigenase 2 , Feminino , Humanos , Imunoterapia , Ligantes , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Receptores CXCR3 , Receptor 3 Toll-Like/uso terapêutico , Microambiente Tumoral
10.
NPJ Precis Oncol ; 5(1): 101, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921236

RESUMO

Various immune signatures predictive of resistance to immune checkpoint inhibitors (ICI) have been described in multiple solid cancers, but still under-investigated in gynecological (GYN) cancer. For 49 GYN cancer patients included in our study, without transcriptome signature, immune-related toxicity was the only clinical predictor of ICI treatment response (p = 0.008). The objective clinical response was the only predictor of progression-free survival (ICI-PFS, p = 0.0008) and overall survival (ICI-OS, p = 0.01). Commonly used ICI marker PD-L1 expression negatively correlated with progression-free survival (ICI-PFS) (p = 0.0019). We performed transcriptome and signaling pathway enrichment analyses based on ICI treatment responses and the survival outcome, and further estimated immune cell abundance using 547 gene markers. Our data revealed that TGF-ß regulated signaling pathway was noted to play an important role in immunotherapy failure. Using our 6-genes TGF-ß score, we observed longer ICI-PFS associated with lower TGF-ß score (8.1 vs. 2.8 months, p = 0.046), which was especially more prominent in ovarian cancer (ICI-PFS 16.6 vs. 2.65 months, p = 0.0012). Further, abundant immunosuppressive cells like T-regulatory cells, eosinophils, and M2 macrophages were associated with shorter ICI-OS and correlated positively with CD274 and CTLA4 expressions. This study provides insight on the potential role of TGF-ß in mediating immunotherapy resistance and cross-talking to immunosuppressive environment in GYN cancer. The TGF-ß score, if validated in a larger cohort, can identify patients who likely to fail ICI and benefit from targeting this pathway to enhance the response to ICI.

11.
Sci Adv ; 7(46): eabi5790, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34767446

RESUMO

We investigated the impact of cancer-associated mesenchymal stem cells (CA-MSCs) on ovarian tumor immunity. In patient samples, CA-MSC presence inversely correlates with the presence of intratumoral CD8+ T cells. Using an immune "hot" mouse ovarian cancer model, we found that CA-MSCs drive CD8+ T cell tumor immune exclusion and reduce response to anti­PD-L1 immune checkpoint inhibitor (ICI) via secretion of numerous chemokines (Ccl2, Cx3cl1, and Tgf-ß1), which recruit immune-suppressive CD14+Ly6C+Cx3cr1+ monocytic cells and polarize macrophages to an immune suppressive Ccr2hiF4/80+Cx3cr1+CD206+ phenotype. Both monocytes and macrophages express high levels of transforming growth factor ß­induced (Tgfbi) protein, which suppresses NK cell activity. Hedgehog inhibitor (HHi) therapy reversed CA-MSC effects, reducing myeloid cell presence and expression of Tgfbi, increasing intratumoral NK cell numbers, and restoring response to ICI therapy. Thus, CA-MSCs regulate antitumor immunity, and CA-MSC hedgehog signaling is an important target for cancer immunotherapy.

12.
Cancers (Basel) ; 12(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322601

RESUMO

New treatment modalities are needed in order to improve the prognosis of women diagnosed with epithelial ovarian cancer (EOC), the most aggressive gynecologic cancer type. Most ovarian tumors are infiltrated by immune effector cells, providing the rationale for targeted approaches that boost the existing or trigger new anti-tumor immune mechanisms. The field of immuno-oncology has experienced remarkable progress in recent years, although the results seen with single agent immunotherapies in several categories of solid tumors have yet to extend to ovarian cancer. The challenge remains to determine what treatment combinations are most suitable for this disease and which patients are likely to benefit and to identify how immunotherapy should be incorporated into EOC standard of care. We review here some of the most promising immune therapies for EOC and focus on those currently tested in clinical trials.

13.
Cancers (Basel) ; 11(11)2019 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-31684072

RESUMO

: Most high-grade serous ovarian cancers (HGSCs) initiate from the fallopian tube epithelium and then metastasize to the ovary and throughout the abdomen. Genomic analyses suggest that most HGSCs seed the ovary prior to abdominal dissemination. Similarly, animal models support a critical role for the ovary in driving abdominal dissemination. Thus, HGSC cell recruitment to the ovary appears to be a critical component of HGSC cell metastasis. We sought to identify factors driving HGSC recruitment to the ovary. We identified CD105 (endoglin, or ENG, a TGF- receptor family member) as a mediator of HGSC cell ovarian recruitment. We found that CD105 was expressed on both serous tubal intraepithelial carcinoma (STIC) cells (STICs-HGSC precursors in the fallopian tube epithelium) and HGSC cells. Using data from The Cancer Genome Atlas (TCGA) and the Cancer Cell Line Encyclopedia (CCLE), we showed that high CD105 expression by HGSC cells correlated with a metastatic signature. Furthermore, intravenous injection of CD105(+) HGSC tumor cells, but not CD105(-), resulted in ovarian-specific metastasis and abdominal dissemination of disease. CD105 knockdown or blockade with a clinically relevant CD105-neutralizing mAb (TRC105), inhibited HGSC metastasis, reduced ascites, and impeded growth of abdominal tumor nodules, thereby improving overall survival in animal models of ovarian cancer. CD105 knockdown was associated with a reduction in TGF-signaling. Together, our data support CD105 as a critical mediator of ovarian cancer spread to the ovary and implicate it as a potential therapeutic target.

14.
Oncogene ; 38(3): 390-405, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30111819

RESUMO

Immunotherapy strategies have been emerging as powerful weapons against cancer. Early clinical trials reveal that overall response to immunotherapy is low in breast cancer patients, suggesting that effective strategies to overcome resistance to immunotherapy are urgently needed. In this study, we investigated whether epigenetic reprograming by modulating histone methylation could enhance effector T lymphocyte trafficking and improve therapeutic efficacy of immune checkpoint blockade in breast cancer with focus on triple-negative breast cancer (TNBC) subtype. In silico analysis of The Cancer Genome Atlas (TCGA) data shows that expression of histone lysine-specific demethylase 1 (LSD1) is inversely associated with the levels of cytotoxic T cell-attracting chemokines (C-C motif chemokine ligand 5 (CCL5), C-X-C motif chemokine ligand 9 and 10 (CXCL9, CXCL10)) and programmed death-ligand 1 (PD-L1) in clinical TNBC specimens. Tiling chromatin immunoprecipitation study showed that re-expression of chemokines by LSD1 inhibition is associated with increased H3K4me2 levels at proximal promoter regions. Rescue experiments using concurrent treatment with small interfering RNA or inhibitor of chemokine receptors blocked LSD1 inhibitor-enhanced CD8+ T cell migration, indicating a critical role of key T cell chemokines in LSD1-mediated CD8+ lymphocyte trafficking to the tumor microenvironment. In mice bearing TNBC xenograft tumors, anti-PD-1 antibody alone failed to elicit obvious therapeutic effect. However, combining LSD1 inhibitors with PD-1 antibody significantly suppressed tumor growth and pulmonary metastasis, which was associated with reduced Ki-67 level and augmented CD8+ T cell infiltration in xenograft tumors. Overall, these results suggest that LSD1 inhibition may be an effective adjuvant treatment with immunotherapy as a novel management strategy for poorly immunogenic breast tumors.


Assuntos
Antineoplásicos/uso terapêutico , Código das Histonas/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desmetilases/antagonistas & inibidores , Imunoterapia/métodos , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/imunologia , Evasão Tumoral/efeitos dos fármacos , Animais , Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Feminino , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Metilação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/enzimologia , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Oncogene ; 38(13): 2380-2393, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30518877

RESUMO

The backbone of ovarian cancer treatment is platinum-based chemotherapy and aggressive surgical debulking. New therapeutic approaches using immunotherapy via immune checkpoint blockade, which have demonstrated clinical efficacy in other tumor types, have been less promising in ovarian cancer. To increase their clinical efficacy, checkpoint inhibitors are now being tested in clinical trials in combination with chemotherapy. Here, we evaluated the impact of cisplatin on tumor immunogenicity and its in vivo roles when used alone or in combination with anti-PD-L1, in two novel murine ovarian cancer cell models. The 2F8 and its platinum-resistant derivative 2F8cis model, display distinct inflammatory profiles and chemotherapy sensitivities, and mirror the primary and recurrent human disease, respectively. Acute and chronic exposure to cisplatin enhances tumor immunogenicity by increasing calreticulin, MHC class I, antigen presentation and T-cell infiltration. Cisplatin also upregulates PD-L1 expression in vitro and in vivo, demonstrating a dual, paradoxical immune modulatory effect and supporting the rationale for combination with immune checkpoint blockade. One of the pathways activated by cisplatin treatment is the cGAS/STING pathway. Chronic cisplatin treatment led to upregulation of cGAS and STING proteins in 2F8cis compared to parental 2F8 cells, while acute exposure to cisplatin further increases cGAS and STING levels in both 2F8 and 2F8cis cells. Overexpression of cGAS/STING modifies tumor immunogenicity by upregulating PD-L1, MHC I and calreticulin in tumor cells. Anti-PD-L1 alone in a platinum-sensitive model or with cisplatin in a platinum-resistant model increases survival. These studies have high translational potential in ovarian cancer.


Assuntos
Carcinoma Epitelial do Ovário/imunologia , Cisplatino/farmacologia , Sistema Imunitário/efeitos dos fármacos , Imunomodulação/efeitos dos fármacos , Neoplasias Ovarianas/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Carcinoma Epitelial do Ovário/patologia , Carcinoma Epitelial do Ovário/terapia , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Terapia Combinada , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Imunoterapia , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Transgênicos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Horm Cancer ; 9(6): 399-407, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30302736

RESUMO

To investigate changes in estrogen receptor alpha (ERα) signaling during progression of endometriosis to endometriosis-associated ovarian cancer (EAOC) as a driver of malignant transformation. We procured tissue samples of normal endometrium, endometriosis (benign, atypical, concurrent with EAOC), and EAOC. We evaluated expression of a 236-gene signature of estrogen signaling. ANOVA and unsupervised clustering were used to identify gene expression profiles across disease states. These profiles were compared to profiles of estrogen regulation in cancer models from the Gene Expression Omnibus (GEO). Gene Set Enrichment Analysis (GSEA) was performed to determine whether gene expression in EAOC was consistent with ERα activity. ANOVA revealed 158 differentially expressed genes (q < 0.05) and unsupervised clustering identified five distinct gene clusters. The estrogen signaling profile of EAOC was not consistent with activated ERα in pre-clinical models. Gene set enrichment analysis did not identify signatures of activated ERα in EAOC but instead identified expression patterns consistent with loss of ERα function and development of endocrine resistance. Gene expression data suggest that ERα signaling becomes inactivated throughout the progression of endometriosis to EAOC. The gene expression pattern in EAOC is more consistent with profiles of endocrine resistance.


Assuntos
Carcinoma Epitelial do Ovário/patologia , Endometriose/patologia , Receptor alfa de Estrogênio/metabolismo , Neoplasias Ovarianas/patologia , Adulto , Idoso , Carcinoma Epitelial do Ovário/metabolismo , Progressão da Doença , Endometriose/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/metabolismo , Transdução de Sinais/fisiologia , Transcriptoma
17.
Biomark Med ; 12(9): 945-952, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30043637

RESUMO

AIM: To explore inflammatory biomarkers secreted by adipose stem cells (ASCs) in omental, retroperitoneal and subcutaneous adipose tissues of women with endometrial cancer. PATIENTS & METHODS: ASCs were collected from 22 women, aged 35-83 years, undergoing hysterectomy for endometrial cancer. Angiopoietin-2, EGF, IL-8, leptin, VEGFA, VEGFC and VEFGD levels in the ASC-conditioned media were analyzed by Luminex. RESULTS: We found a significant difference between the three depots for IL-8 (p < 0.0001), with the highest levels of IL-8 in the omental depot. VEGFA levels were highest in the retroperitoneal depot. CONCLUSION: This is one of the first studies to explore biomarker expression in ASC-conditioned media in adipose tissue. ASC characteristics may be important to evaluate in relation to cancer risk.


Assuntos
Biomarcadores Tumorais/biossíntese , Citocinas/biossíntese , Neoplasias do Endométrio/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Células-Tronco/metabolismo , Gordura Subcutânea/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias do Endométrio/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Células-Tronco/patologia , Gordura Subcutânea/patologia
18.
Cancer Clin Oncol ; 6(1): 12-24, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28603578

RESUMO

The ability of stress to induce immune suppression is widely recognized, but the mechanisms underlying the effects of stress on the adaptive immune system during tumor progression are not completely understood. To study the effect of stress on the immune system in vivo, we used a preclinical immunocompetent mouse model bearing 4T1 mammary adenocarcinoma cells. Mice were randomized into 4 groups, including social isolation (SI), acute restraint stress (aRRS), chronic restraint stress (cRRS), or no stress (NS). We found that SI significantly decreased the number of tumor-bearing mice still alive at the end of protocol (28 days), compared to NS mice. Although we did not detect significant changes in primary tumor volume, we observed a significant increase in the endothelial marker CD31 in primary tumors of SI mice and in lung metastases in SI and RRS mice. Survival decline in SI mice was associated with significant decreases in splenic CD8 cells and in activated T cells. From a mechanistic standpoint, RRS increased expression of FOXP3, CXCL-10, and granzyme B in mouse tumors, and the effects were reversed by propranolol. Our data demonstrate that various forms of stress differentially impact adaptive immunity and tumor angiogenesis, and negatively impact survival.

19.
Gynecol Oncol ; 146(1): 137-145, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28483269

RESUMO

OBJECTIVES: Ovarian cancer leads to abdominal carcinomatosis and late stage (III/IV) diagnosis in 75% of patients. Three randomized phase III trials have demonstrated that intraperitoneal (IP) chemotherapy improves outcomes in epithelial ovarian cancer. While IP treatment is validated by clinical trials, there is a poor understanding of the mechanism(s) leading to the survival advantage other than the increased concentration of cytotoxic drugs within the tumor microenvironment. A better understanding of this process through analysis of dynamic biomarkers should promote novel approaches that may enhance tumor clearance. We propose this pilot study to confirm the feasibility of collecting serial peritoneal samples from implanted catheters in women receiving IP chemotherapy. We believe these specimens may be used for multiplex analysis to reveal unique biomarker fluctuations when compared to peripheral blood. METHODS: From 13 women participating on GOG 252, 30 whole blood, 12 peritoneal fluid (PF), and 20 peritoneal wash (PW) with 30mL saline were obtained. Samples were requested prior to the first three chemotherapy cycles. Samples were assessed for volume, cell populations, protein, RNA, and miRNA content changes. RESULTS: Median volume for PF was 1.6mL and 3.1mL for PW. PW is a dilution of PF capable of capturing measurable biomarkers. Peritoneal aspirates contain a unique profile of biomarkers distinct from blood. miRNA undergo earlier alteration with chemotherapy than genes. Flow cytometry does not adequately capture biomarker fluctuations. CONCLUSIONS: As a proof of principle study, this trial provides evidence that sampling the peritoneal cavity can be adapted for biomarker analysis.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Líquido Ascítico/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Idoso , Líquido Ascítico/química , Bevacizumab/administração & dosagem , Biomarcadores Tumorais/sangue , Carboplatina/administração & dosagem , Carcinoma Epitelial do Ovário , Cateteres de Demora , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Paclitaxel/administração & dosagem , Projetos Piloto , Ensaios Clínicos Controlados Aleatórios como Assunto , Microambiente Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA