Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Antioxidants (Basel) ; 13(7)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39061923

RESUMO

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death globally and is primarily caused by cigarette smoking (CS). Neurocognitive comorbidities such as anxiety and cognitive impairments are common among people with COPD. CS-induced lung inflammation and oxidative stress may "spill-over" into the systemic circulation, driving the onset of these comorbidities. We investigated whether a prophylactic treatment with the NADPH Oxidase 2 (NOX2) inhibitor, apocynin, could prevent CS-induced neurocognitive impairments. Adult male BALB/c mice were exposed to CS (9 cigarettes/day, 5 days/week) or room air (sham) for 8 weeks with co-administration of apocynin (5 mg/kg, intraperitoneal injection once daily) or vehicle (0.01% DMSO in saline). Following 7 weeks of CS exposure, mice underwent behavioral testing to assess recognition and spatial memory (novel object recognition and Y maze, respectively) and anxiety-like behaviors (open field and elevated plus maze). Mice were then euthanized, and blood, lungs, and brains were collected. Apocynin partially improved CS-induced lung neutrophilia and reversed systemic inflammation (C-reactive protein) and oxidative stress (malondialdehyde). Apocynin exerted an anxiolytic effect in CS-exposed mice, which was associated with restored microglial profiles within the amygdala and hippocampus. Thus, targeting oxidative stress using apocynin can alleviate anxiety-like behaviors and could represent a novel strategy for managing COPD-related anxiety disorders.

2.
Front Immunol ; 15: 1378610, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638436

RESUMO

Influenza A virus (IAV) infection in pregnancy resembles a preeclamptic phenotype characterised by vascular dysfunction and foetal growth retardation. Given that low dose aspirin (ASA) is safe in pregnancy and is used to prevent preeclampsia, we investigated whether ASA or NO-conjugated aspirin, NCX4016, resolve vascular inflammation and function to improve offspring outcomes following IAV infection in pregnant mice. Pregnant mice were intranasally infected with a mouse adapted IAV strain (Hkx31; 104 plaque forming units) and received daily treatments with either 200µg/kg ASA or NCX4016 via oral gavage. Mice were then culled and the maternal lungs and aortas collected for qPCR analysis, and wire myography was performed on aortic rings to assess endothelial and vascular smooth muscle functionality. Pup and placentas were weighed and pup growth rates and survival assessed. IAV infected mice had an impaired endothelial dependent relaxation response to ACh in the aorta, which was prevented by ASA and NCX4016 treatment. ASA and NCX4016 treatment prevented IAV dissemination and inflammation of the aorta as well as improving the pup placental ratios in utero, survival and growth rates at post-natal day 5. Low dose ASA is safe to use during pregnancy for preeclampsia and this study demonstrates that ASA may prove a promising treatment for averting the significant vascular complications associated with influenza infection during pregnancy.


Assuntos
Aspirina/análogos & derivados , Vírus da Influenza A , Influenza Humana , Nitratos , Pré-Eclâmpsia , Doenças Vasculares , Humanos , Camundongos , Feminino , Gravidez , Animais , Placenta , Aspirina/farmacologia , Inflamação , Aorta
3.
Respir Res ; 25(1): 161, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38614991

RESUMO

BACKGROUND: Longitudinal studies have identified childhood asthma as a risk factor for obstructive pulmonary disease (COPD) and asthma-COPD overlap (ACO) where persistent airflow limitation can develop more aggressively. However, a causal link between childhood asthma and COPD/ACO remains to be established. Our study aimed to model the natural history of childhood asthma and COPD and to investigate the cellular/molecular mechanisms that drive disease progression. METHODS: Allergic airways disease was established in three-week-old young C57BL/6 mice using house dust mite (HDM) extract. Mice were subsequently exposed to cigarette smoke (CS) and HDM for 8 weeks. Airspace enlargement (emphysema) was measured by the mean linear intercept method. Flow cytometry was utilised to phenotype lung immune cells. Bulk RNA-sequencing was performed on lung tissue. Volatile organic compounds (VOCs) in bronchoalveolar lavage-fluid were analysed to screen for disease-specific biomarkers. RESULTS: Chronic CS exposure induced emphysema that was significantly augmented by HDM challenge. Increased emphysematous changes were associated with more abundant immune cell lung infiltration consisting of neutrophils, interstitial macrophages, eosinophils and lymphocytes. Transcriptomic analyses identified a gene signature where disease-specific changes induced by HDM or CS alone were conserved in the HDM-CS group, and further revealed an enrichment of Mmp12, Il33 and Il13, and gene expression consistent with greater expansion of alternatively activated macrophages. VOC analysis also identified four compounds increased by CS exposure that were paradoxically reduced in the HDM-CS group. CONCLUSIONS: Early-life allergic airways disease worsened emphysematous lung pathology in CS-exposed mice and markedly alters the lung transcriptome.


Assuntos
Asma , Fumar Cigarros , Enfisema , Hipersensibilidade , Enfisema Pulmonar , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Pyroglyphidae , Fumar Cigarros/efeitos adversos , Enfisema Pulmonar/etiologia , Inflamação
4.
J Allergy Clin Immunol ; 153(3): 672-683.e6, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37931708

RESUMO

BACKGROUND: Patients with severe asthma can present with eosinophilic type 2 (T2), neutrophilic, or mixed inflammation that drives airway remodeling and exacerbations and represents a major treatment challenge. The common ß (ßc) receptor signals for 3 cytokines, GM-CSF, IL-5, and IL-3, which collectively mediate T2 and neutrophilic inflammation. OBJECTIVE: To determine the pathogenesis of ßc receptor-mediated inflammation and remodeling in severe asthma and to investigate ßc antagonism as a therapeutic strategy for mixed granulocytic airway disease. METHODS: ßc gene expression was analyzed in bronchial biopsy specimens from patients with mild-to-moderate and severe asthma. House dust mite extract and Aspergillus fumigatus extract (ASP) models were used to establish asthma-like pathology and airway remodeling in human ßc transgenic mice. Lung tissue gene expression was analyzed by RNA sequencing. The mAb CSL311 targeting the shared cytokine binding site of ßc was used to block ßc signaling. RESULTS: ßc gene expression was increased in patients with severe asthma. CSL311 potently reduced lung neutrophils, eosinophils, and interstitial macrophages and improved airway pathology and lung function in the acute steroid-resistant house dust mite extract model. Chronic intranasal ASP exposure induced airway inflammation and fibrosis and impaired lung function that was inhibited by CSL311. CSL311 normalized the ASP-induced fibrosis-associated extracellular matrix gene expression network and strongly reduced signatures of cellular inflammation in the lung. CONCLUSIONS: ßc cytokines drive steroid-resistant mixed myeloid cell airway inflammation and fibrosis. The anti-ßc antibody CSL311 effectively inhibits mixed T2/neutrophilic inflammation and severe asthma-like pathology and reverses fibrosis gene signatures induced by exposure to commonly encountered environmental allergens.


Assuntos
Asma , Receptores de Citocinas , Camundongos , Animais , Humanos , Receptores de Citocinas/metabolismo , Remodelação das Vias Aéreas , Pulmão , Citocinas/metabolismo , Camundongos Transgênicos , Inflamação , Alérgenos , Esteroides/uso terapêutico , Fibrose , Pyroglyphidae
5.
Br J Pharmacol ; 181(1): 3-20, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37828646

RESUMO

Chronic obstructive pulmonary disease (COPD) is a major incurable health burden, ranking as the third leading cause of death worldwide, mainly driven by cigarette smoking. COPD is characterised by persistent airway inflammation, lung function decline and premature ageing with the presence of pulmonary senescent cells. This review proposes that cellular senescence, a state of stable cell cycle arrest linked to ageing, induced by inflammation and oxidative stress in COPD, extends beyond the lungs and affects the systemic circulation. This pulmonary senescent profile will reach other organs via extracellular vesicles contributing to brain inflammation and damage, and increasing the risk of neurological comorbidities, such as stroke, cerebral small vessel disease and Alzheimer's disease. The review explores the role of cellular senescence in COPD-associated brain conditions and investigates the relationship between cellular senescence and circadian rhythm in COPD. Additionally, it discusses potential therapies, including senomorphic and senolytic treatments, as novel strategies to halt or improve the progression of COPD.


Assuntos
Pulmão , Doença Pulmonar Obstrutiva Crônica , Humanos , Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Envelhecimento , Senescência Celular , Estresse Oxidativo
6.
Methods Mol Biol ; 2691: 97-109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37355540

RESUMO

Chronic obstructive pulmonary disease (COPD) is an incurable disease that is a major cause of mortality and morbidity worldwide. Cigarette smoking is a major cause of COPD and triggers progressive airflow limitation, chronic lung inflammation, and irreversible lung damage and decline in lung function. COPD patients often experience various extrapulmonary comorbid diseases, including cardiovascular disease, skeletal muscle wasting, lung cancer, and cognitive decline which markedly impact on disease morbidity, progression, and mortality. People with COPD are also susceptible to respiratory infections which cause exacerbations of the underlying disease (AECOPD). The mechanisms and mediators underlying COPD and its comorbidities are poorly understood and current COPD therapy is relatively ineffective. We and others have used animal modelling systems to explore the mechanisms underlying COPD, AECOPD, and comorbidities of COPD with the goal of identifying novel therapeutic targets. Here we provide a preclinical model and protocols to assess the cellular, molecular, and pathological consequences of cigarette smoke exposure and the development of comorbidities of COPD.


Assuntos
Pneumonia , Doença Pulmonar Obstrutiva Crônica , Animais , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Pneumonia/complicações , Pulmão/patologia , Comorbidade , Modelos Animais de Doenças , Inflamação/patologia
7.
Br J Pharmacol ; 180(15): 2018-2034, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36908040

RESUMO

BACKGROUND AND PURPOSE: Cardiovascular disease affects up to half of the patients with chronic obstructive pulmonary disease (COPD), exerting deleterious impact on health outcomes and survivability. Vascular endothelial dysfunction marks the onset of cardiovascular disease. The present study examined the effect of a potent NADPH Oxidase (NOX) inhibitor and free-radical scavenger, apocynin, on COPD-related cardiovascular disease. EXPERIMENTAL APPROACH: Male BALB/c mice were exposed to either room air (Sham) or cigarette smoke (CS) generated from 9 cigarettes·day-1 , 5 days a week for up to 24 weeks with or without apocynin treatment (5 mg·kg-1 ·day-1 , intraperitoneal injection). KEY RESULTS: Eight-weeks of apocynin treatment reduced airway neutrophil infiltration (by 42%) and completely preserved endothelial function and endothelial nitric oxide synthase (eNOS) availability against the oxidative insults of cigarette smoke exposure. These preservative effects were maintained up until the 24-week time point. 24-week of apocynin treatment markedly reduced airway inflammation (reduced infiltration of macrophage, neutrophil and lymphocyte), lung function decline (hyperinflation) and prevented airway collagen deposition by cigarette smoke exposure. CONCLUSION AND IMPLICATIONS: Limiting NOX activity may slow COPD progression and lower cardiovascular disease risk, particularly when signs of oxidative stress become evident.


Assuntos
Doenças Cardiovasculares , Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Lesões do Sistema Vascular , Camundongos , Animais , Masculino , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Estresse Oxidativo , Pulmão
8.
Brain Behav Immun ; 109: 292-307, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36775074

RESUMO

Chronic obstructive pulmonary disease (COPD) is a major, incurable respiratory condition that is primarily caused by cigarette smoking (CS). Neurocognitive disorders including cognitive dysfunction, anxiety and depression are highly prevalent in people with COPD. It is understood that increased lung inflammation and oxidative stress from CS exposure may 'spill over' into the systemic circulation to promote the onset of these extra-pulmonary comorbidities, and thus impacts the quality of life of people with COPD. The precise role of the 'spill-over' of inflammation and oxidative stress in the onset of COPD-related neurocognitive disorders are unclear. The present study investigated the impact of chronic CS exposure on anxiety-like behaviors and social recognition memory, with a particular focus on the role of the 'spill-over' of inflammation and oxidative stress from the lungs. Adult male BALB/c mice were exposed to either room air (sham) or CS (9 cigarettes per day, 5 days a week) for 24 weeks and were either daily co-administered with the NOX2 inhibitor, apocynin (5 mg/kg, in 0.01 % DMSO diluted in saline, i.p.) or vehicle (0.01 % DMSO in saline) one hour before the initial CS exposure of the day. After 23 weeks, mice underwent behavioral testing and physiological diurnal rhythms were assessed by monitoring diurnal regulation profiles. Lungs were collected and assessed for hallmark features of COPD. Consistent with its anti-inflammatory and oxidative stress properties, apocynin treatment partially lessened lung inflammation and lung function decline in CS mice. CS-exposed mice displayed marked anxiety-like behavior and impairments in social recognition memory compared to sham mice, which was prevented by apocynin treatment. Apocynin was unable to restore the decreased Bmal1-positive cells, key in cells in diurnal regulation, in the suprachiasmatic nucleus of the hypothalamus to that of sham levels. CS-exposed mice treated with apocynin was associated with a restoration of microglial area per cell and basal serum corticosterone. This data suggests that we were able to model the CS-induced social recognition memory impairments seen in humans with COPD. The preventative effects of apocynin on memory impairments may be via a microglial dependent mechanism.


Assuntos
Fumar Cigarros , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Humanos , Adulto , Masculino , Camundongos , Animais , Fumar Cigarros/efeitos adversos , Microglia , Dimetil Sulfóxido/farmacologia , Qualidade de Vida , Pulmão , Pneumonia/complicações , Núcleo Supraquiasmático , Hipotálamo , Inflamação/complicações , Camundongos Endogâmicos C57BL
9.
Proc Natl Acad Sci U S A ; 119(36): e2201494119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037355

RESUMO

Pulmonary emphysema is associated with dysregulated innate immune responses that promote chronic pulmonary inflammation and alveolar apoptosis, culminating in lung destruction. However, the molecular regulators of innate immunity that promote emphysema are ill-defined. Here, we investigated whether innate immune inflammasome complexes, comprising the adaptor ASC, Caspase-1 and specific pattern recognition receptors (PRRs), promote the pathogenesis of emphysema. In the lungs of emphysematous patients, as well as spontaneous gp130F/F and cigarette smoke (CS)-induced mouse models of emphysema, the expression (messenger RNA and protein) and activation of ASC, Caspase-1, and the inflammasome-associated PRR and DNA sensor AIM2 were up-regulated. AIM2 up-regulation in emphysema coincided with the biased production of the mature downstream inflammasome effector cytokine IL-1ß but not IL-18. These observations were supported by the genetic blockade of ASC, AIM2, and the IL-1 receptor and therapy with AIM2 antagonistic suppressor oligonucleotides, which ameliorated emphysema in gp130F/F mice by preventing elevated alveolar cell apoptosis. The functional requirement for AIM2 in driving apoptosis in the lung epithelium was independent of its expression in hematopoietic-derived immune cells and the recruitment of infiltrating immune cells in the lung. Genetic and inhibitor-based blockade of AIM2 also protected CS-exposed mice from pulmonary alveolar cell apoptosis. Intriguingly, IL-6 trans-signaling via the soluble IL-6 receptor, facilitated by elevated levels of IL-6, acted upstream of the AIM2 inflammasome to augment AIM2 expression in emphysema. Collectively, we reveal cross-talk between the AIM2 inflammasome/IL-1ß and IL-6 trans-signaling axes for potential exploitation as a therapeutic strategy for emphysema.


Assuntos
Proteínas de Ligação a DNA , Imunidade Inata , Interleucina-1beta , Interleucina-6 , Enfisema Pulmonar , Animais , Apoptose , Caspase 1/metabolismo , Receptor gp130 de Citocina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Enfisema Pulmonar/imunologia
10.
Front Mol Neurosci ; 15: 893083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656006

RESUMO

Background and Objective: Neurocognitive dysfunction is present in up to ∼61% of people with chronic obstructive pulmonary disease (COPD), with symptoms including learning and memory deficiencies, negatively impacting the quality of life of these individuals. As the mechanisms responsible for neurocognitive deficits in COPD remain unknown, we explored whether chronic cigarette smoke (CS) exposure causes neurocognitive dysfunction in mice and whether this is associated with neuroinflammation and an altered neuropathology. Methods: Male BALB/c mice were exposed to room air (sham) or CS (9 cigarettes/day, 5 days/week) for 24 weeks. After 23 weeks, mice underwent neurocognitive tests to assess working and spatial memory retention. At 24 weeks, mice were culled and lungs were collected and assessed for hallmark features of COPD. Serum was assessed for systemic inflammation and the hippocampus was collected for neuroinflammatory and structural analysis. Results: Chronic CS exposure impaired lung function as well as driving pulmonary inflammation, emphysema, and systemic inflammation. CS exposure impaired working memory retention, which was associated with a suppression in hippocampal microglial number, however, these microglia displayed a more activated morphology. CS-exposed mice showed changes in astrocyte density as well as a reduction in synaptophysin and dendritic spines in the hippocampus. Conclusion: We have developed an experimental model of COPD in mice that recapitulates the hallmark features of the human disease. The altered microglial/astrocytic profiles and alterations in the neuropathology within the hippocampus may explain the neurocognitive dysfunction observed during COPD.

11.
Respirology ; 27(8): 617-629, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35599245

RESUMO

BACKGROUND AND OBJECTIVE: Chronic obstructive pulmonary disease (COPD) is a devastating disease commonly caused by cigarette smoke (CS) exposure that drives tissue injury by persistently recruiting myeloid cells into the lungs. A significant portion of COPD patients also present with overlapping asthma pathology including eosinophilic inflammation. The ßc cytokine family includes granulocyte monocyte-colony-stimulating factor, IL-5 and IL-3 that signal through their common receptor subunit ßc to promote the expansion and survival of multiple myeloid cells including monocytes/macrophages, neutrophils and eosinophils. METHODS: We have used our unique human ßc receptor transgenic (hßc Tg) mouse strain that expresses human ßc instead of mouse ßc and ßIL3 in an acute CS exposure model. Lung tissue injury was assessed by histology and measurement of albumin and lactate dehydrogenase levels in the bronchoalveolar lavage (BAL) fluid. Transgenic mice were treated with an antibody (CSL311) that inhibits human ßc signalling. RESULTS: hßc Tg mice responded to acute CS exposure by expanding blood myeloid cell numbers and recruiting monocyte-derived macrophages (cluster of differentiation 11b+ [CD11b+ ] interstitial and exudative macrophages [IM and ExM]), neutrophils and eosinophils into the lungs. This inflammatory response was associated with lung tissue injury and oedema. Importantly, CSL311 treatment in CS-exposed mice markedly reduced myeloid cell numbers in the blood and BAL compartment. Furthermore, CSL311 significantly reduced lung CD11b+ IM and ExM, neutrophils and eosinophils, and this decline was associated with a significant reduction in matrix metalloproteinase-12 (MMP-12) and IL-17A expression, tissue injury and oedema. CONCLUSION: This study identifies CSL311 as a therapeutic antibody that potently inhibits immunopathology and lung injury caused by acute CS exposure.


Assuntos
Fumar Cigarros , Lesão Pulmonar , Doença Pulmonar Obstrutiva Crônica , Animais , Líquido da Lavagem Broncoalveolar , Fumar Cigarros/efeitos adversos , Eosinófilos , Humanos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/metabolismo
12.
Front Pharmacol ; 13: 859146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370652

RESUMO

Limb muscle dysfunction is a hallmark of Chronic Obstructive Pulmonary Disease (COPD) which is further worsened following a viral-induced acute exacerbation of COPD (AECOPD). An amplified airway inflammation underlies the aggravated respiratory symptoms seen during AECOPD, however, its contributory role to limb muscle dysfunction is unclear. The present study examined the impact of influenza A virus (IAV)-induced exacerbation on hind limb muscle parameters. Airway inflammation was established in male BALB/c mice by exposure to cigarette smoke (CS) for 8 weeks. Exacerbation was then induced via inoculation with IAV, and various lung and muscle parameters were assessed on day 3 (peak of airway inflammation) and day 10 (resolution phase) post-infection. IAV infection exacerbated CS-induced airway inflammation as evidenced by further increases in immune cell counts within bronchoalveolar lavage fluid. Despite no significant impact on muscle mass, IAV exacerbation worsened the force-generating capacity of the tibialis anterior (TA) muscle. Protein oxidation and myogenic disruption was observed in the TA following CS exposure, however, IAV exacerbation did not augment these detrimental processes. To further explore the contributory role of airway inflammation on myogenic signaling, cultured myotubes were exposed to conditioned medium (CM) derived from bronchial epithelial cells stimulated with polyinosinic:polycytidylic acid and cigarette smoke extract (CSE). Despite an amplified inflammatory response in the lung epithelial cells, the CM derived from these cells did not potentiate myogenic disruption in the C2C12 myotubes. In conclusion, our data suggest that certain parameters of limb muscle dysfunction seen during viral-induced AECOPD may be independent of airway inflammation.

13.
Clin Sci (Lond) ; 136(8): 537-555, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35343564

RESUMO

People with chronic obstructive pulmonary disease (COPD) are susceptible to respiratory infections which exacerbate pulmonary and/or cardiovascular complications, increasing their likelihood of death. The mechanisms driving these complications remain unknown but increased oxidative stress has been implicated. Here we investigated whether influenza A virus (IAV) infection, following chronic cigarette smoke (CS) exposure, worsens vascular function and if so, whether the antioxidant ebselen alleviates this vascular dysfunction. Male BALB/c mice were exposed to either room air or CS for 8 weeks followed by inoculation with IAV (Mem71, 1 × 104.5 pfu). Mice were treated with ebselen (10 mg/kg) or vehicle (5% w/v CM-cellulose in water) daily. Mice were culled 3- and 10-days post-infection, and their lungs lavaged to assess inflammation. The thoracic aorta was excised to investigate endothelial and smooth muscle dilator responses, expression of key vasodilatory and oxidative stress modulators, infiltrating immune cells and vascular remodelling. CS increased lung inflammation and caused significant vascular endothelial dysfunction, which was worsened by IAV infection. CS-driven increases in vascular oxidative stress, aortic wall remodelling and suppression of endothelial nitric oxide synthase (eNOS) were not affected by IAV infection. CS and IAV infection significantly enhanced T cell recruitment into the aortic wall. Ebselen abolished the exaggerated lung inflammation, vascular dysfunction and increased T cell infiltration in CS and IAV-infected mice. Our findings showed that ebselen treatment abolished vascular dysfunction in IAV-induced exacerbations of CS-induced lung inflammation indicating it may have potential for the treatment of cardiovascular comorbidities seen in acute exacerbations of COPD (AECOPD).


Assuntos
Fumar Cigarros , Vírus da Influenza A , Influenza Humana , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Animais , Azóis/farmacologia , Fumar Cigarros/efeitos adversos , Humanos , Influenza Humana/complicações , Isoindóis , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Compostos Organosselênicos , Pneumonia/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Nicotiana/efeitos adversos
14.
J Neuroinflammation ; 19(1): 72, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351173

RESUMO

BACKGROUND: Cigarette smoking (CS) is the leading cause of chronic obstructive pulmonary disease (COPD). The "spill-over" of pulmonary inflammation into the systemic circulation may damage the brain, leading to cognitive dysfunction. Cessation of CS can improve pulmonary and neurocognitive outcomes, however, its benefit on the neuroinflammatory profile remains uncertain. Here, we investigate how CS exposure impairs neurocognition and whether this can be reversed with CS cessation or an antioxidant treatment. METHODS: Male BALB/c mice were exposed to CS (9 cigarettes/day for 8 weeks) followed by 4 weeks of CS cessation. Another cohort of CS-exposed mice were co-administrated with a glutathione peroxidase mimetic, ebselen (10 mg/kg) or vehicle (5% CM-cellulose). We assessed pulmonary inflammation, spatial and working memory, and the hippocampal microglial, oxidative and synaptic profiles. RESULTS: CS exposure increased lung inflammation which was reduced following CS cessation. CS caused spatial and working memory impairments which were attributed to hippocampal microglial activation and suppression of synaptophysin. CS cessation did not improve memory deficits or alter microglial activation. Ebselen completely prevented the CS-induced working and spatial memory impairments, which was associated with restored synaptophysin expression without altering microglial activation. CONCLUSION: We were able to model the CS-induced memory impairment and microglial activation seen in human COPD. The preventative effects of ebselen on memory impairment is likely to be dependent on a preserved synaptogenic profile. Cessation alone also appears to be insufficient in correcting the memory impairment, suggesting the importance of incorporating antioxidant therapy to help maximising the benefit of cessation.


Assuntos
Fumar Cigarros , Disfunção Cognitiva , Animais , Fumar Cigarros/efeitos adversos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle , Hipocampo , Humanos , Isoindóis , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Compostos Organosselênicos , Sinaptofisina
15.
Clin Sci (Lond) ; 136(6): 405-423, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35319068

RESUMO

Chronic obstructive pulmonary disease (COPD) and atherosclerosis are chronic irreversible diseases, that share a number of common causative factors including cigarette smoking. Atherosclerosis drastically impairs blood flow and oxygen availability to tissues, leading to life-threatening outcomes including myocardial infarction (MI) and stroke. Patients with COPD are most likely to die as a result of a cardiovascular event, with 30% of all COPD-related deaths being attributed to cardiovascular disease (CVD). Both atherosclerosis and COPD involve significant local (i.e. lung, vasculature) and systemic inflammation and oxidative stress, of which current pharmacological treatments have limited efficacy, hence the urgency for the development of novel life-saving therapeutics. Currently these diseases must be treated individually, with no therapies available that can effectively reduce the likelihood of comorbid CVD other than cessation of cigarette smoking. In this review, the important mechanisms that drive atherosclerosis and CVD in people with COPD are explained and we propose that modulation of both the oxidative stress and the inflammatory burden will provide a novel therapeutic strategy to treat both the pulmonary and systemic manifestations related to these diseases.


Assuntos
Aterosclerose , Sistema Cardiovascular , Doença Pulmonar Obstrutiva Crônica , Aterosclerose/tratamento farmacológico , Humanos , Pulmão , Estresse Oxidativo , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
16.
J Thorac Oncol ; 17(5): 675-687, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35124252

RESUMO

INTRODUCTION: Programmed death-ligand 1 (PD-L1) copy number gains may be predictive of clinical response to immunotherapy in NSCLC. This study investigated PD-L1 copy number variations in tumor resection and bronchoscopy biopsies and its relationship with PD-L1 tumor cell staining and inflammatory gene expression. METHODS: PD-L1 gene copy number and mRNA expression were evaluated by real-time polymerase chain reaction in surgically resected NSCLC tumor biopsies (n = 87) and control biopsies (n = 20). A second cohort (n = 15) of bronchoscopy-derived tumor biopsies was analyzed, including multiple biopsies from the same patient across different anatomical sites. RESULTS: PD-L1 mRNA levels strongly correlated with PD-L1 tumor staining (r = 0.55, p < 0.0001). Interferon-γ mRNA expression associated with PD-L1 immune cell staining, but not PD-L1 tumor cell staining. In contrast, PD-L1 copy number positively associated PD-L1 tumor staining, but not PD-L1 immune cell staining. PD-L1 copy number analysis detected loss (15 of 87 = 17%) and gain (5 of 87 = 7%) of copy number. Tumors with low PD-L1 copy number expressed significantly reduced levels of inflammatory (interferon-γ, interleukin [IL]-6, IL-1ß, MMP-9) and immunosuppressive (IL-10, transforming growth factor ß) mediators. Analysis of bronchoscopy-derived biopsies revealed low heterogeneity in copy number values across different anatomical sites, in contrast to more variable PD-L1 mRNA expression. CONCLUSIONS: Low PD-L1 copy number tumors display reduced PD-L1 expression, reduced PD-L1 tumor cell staining, and an immunologic cold tumor microenvironment. Because PD-L1 copy number values are highly stable across different tumor regions, its evaluation may represent a robust and complimentary biomarker for predicting response to immunotherapy, where low copy number may predict lack of response.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Variações do Número de Cópias de DNA , Humanos , Interferon gama/genética , Neoplasias Pulmonares/patologia , RNA Mensageiro/genética , Coloração e Rotulagem , Microambiente Tumoral
17.
Pharmacol Ther ; 233: 108017, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34626675

RESUMO

Chronic obstructive pulmonary disease (COPD) is a major incurable global health burden and currently the 3rd largest cause of death in the world, with approximately 3.23 million deaths per year. Globally, the financial burden of COPD is approximately €82 billion per year and causes substantial morbidity and mortality. Importantly, much of the disease burden and health care utilisation in COPD is associated with the management of its comorbidities and viral and bacterial-induced acute exacerbations (AECOPD). Recent clinical studies have shown that cognitive dysfunction is present in up to 60% of people with COPD, with impairments in executive function, memory, and attention, impacting on important outcomes such as quality of life, hospitalisation and survival. The high prevalence of cognitive dysfunction in COPD may also help explain the insufficient adherence to therapeutic plans and strategies, thus worsening disease progression in people with COPD. However, the mechanisms underlying the impaired neuropathology and cognition in COPD remain largely unknown. In this review, we propose that the observed pulmonary oxidative burden and inflammatory response of people with COPD 'spills over' into the systemic circulation, resulting in damage to the brain and leading to cognitive dysfunction. As such, drugs targeting the lungs and comorbidities concurrently represent an exciting and unique therapeutic opportunity to treat COPD and cognitive impairments, which may lead to the production of novel targets to prevent and reverse the debilitating and life-threatening effects of cognitive dysfunction in COPD.


Assuntos
Disfunção Cognitiva , Doença Pulmonar Obstrutiva Crônica , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Progressão da Doença , Humanos , Pulmão , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Qualidade de Vida
18.
Clin Sci (Lond) ; 135(17): 2103-2119, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34427662

RESUMO

Consumption of diet rich in fat and cigarette smoking (CS) are independent risk factors of non-alcoholic steatohepatitis (NASH), and they often occur together in some populations. The present study investigated the mechanisms of high-fat diet (HFD) and CS, individually and in combination, on the pathogenesis of NASH in mice. C57BL/6 male mice were subjected to either a low-fat chow (CH) or HFD with or without mainstream CS-exposure (4 cigarettes/day, 5 days/ week for 14 weeks). HFD alone caused hepatosteatosis (2.5-fold increase in TG content) and a significant increase in 3-nitrotyrisine (by ∼40-fold) but without an indication of liver injury, inflammation or fibrosis. CS alone in CH-fed mice increased in Tnfα expression and macrophage infiltration by 2-fold and relatively less increase in 3-nitrotyrosine (18-fold). Combination of HFD and CS precipitated hepatosteatosis to NASH reflected by exacerbated makers of liver inflammation and fibrosis which were associated with much severe liver oxidative stress (90-fold increase in 3-nitrotyrisine along with 6-fold increase in carbonylated proteins and 56% increase in lipid oxidations). Further studies were performed to administer the antioxidant tempol to CS exposed HFD mice and the results showed that the inhibition of liver oxidative stress prevented inflammatory and fibrotic changes in liver despite persisting hepatosteatosis. Our findings suggest that oxidative stress is a key mechanism underlying CS-promoted progression of simple hepatosteatosis to NASH. Targeting hepatic oxidative stress may be a viable strategy in halting the progression of metabolic associated fatty liver disease.


Assuntos
Cirrose Hepática/etiologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Estresse Oxidativo , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Antioxidantes/farmacologia , Óxidos N-Cíclicos/farmacologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Interleucina-1beta/metabolismo , Peroxidação de Lipídeos , Fígado/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/prevenção & controle , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Oxidativo/efeitos dos fármacos , Carbonilação Proteica , Marcadores de Spin , Fator de Necrose Tumoral alfa/metabolismo
19.
Cancers (Basel) ; 13(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203378

RESUMO

Tumour-associated neutrophils (TANs) can support tumour growth by suppressing cytotoxic lymphocytes. AT-RvD1 is an eicosanoid that can antagonise neutrophil trafficking instigated by ALX/FPR2 ligands such as serum amyloid A (SAA). We aimed to establish whether SAA and ALOX5 expression associates with TANs and investigate the immunomodulatory actions of AT-RvD1 in vivo. MPO-positive neutrophils were quantified in tumour blocks from lung adenocarcinoma (n = 48) and control tissue (n = 20) by IHC. Tumour expression of SAA and ALOX5 were analysed by RTqPCR and an oncogenic KrasG12D lung adenocarcinoma mouse model was used to investigate the in vivo efficacy of AT-RvD1 treatment. ALOX5 expression was markedly reduced in lung adenocarcinoma tumours. The SAA/ALOX5 ratio strongly correlated with TANs and was significantly increased in tumours harbouring an oncogenic KRAS mutation. AT-RvD1 treatment reduced tumour growth in KrasG12D mice, which was accompanied by suppressed cellular proliferation within parenchymal lesions. In addition, AT-RvD1 significantly reduced the neutrophil to lymphocyte ratio (NLR), an established prognostic marker of poor survival in adenocarcinoma. This study identifies a novel molecular signature whereby elevated levels of SAA relative to ALOX5 favour accumulation of TANs. Furthermore, the ALOX5/5-LO enzymatic product, AT-RvD1, markedly reduced the NLR and suppressed tumour growth in KrasG12D mice.

20.
Transl Lung Cancer Res ; 10(6): 2806-2818, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34295679

RESUMO

It has long been recognized that cigarette smoking is a shared risk factor for lung cancer and the debilitating lung disease, chronic obstructive pulmonary disease (COPD). As the severity of COPD increases, so does the risk for developing lung cancer, independently of pack years smoked. Neutrophilic inflammation increases with COPD severity and anti-inflammatories such as non-steroidal anti-inflammatory drugs (NSAIDs) can modulate neutrophil function and cancer risk. This review discusses the biology of tumour associated neutrophils (TANs) in lung cancer, which increase in density with tumour progression, particularly in smokers with non-small cell lung cancer (NSCLC). It is now increasingly recognized that neutrophils are responsive to the tumour microenvironment (TME) and polarize into distinct phenotypes that operate in an anti- (N1) or pro-tumorigenic (N2) manner. Intriguingly, the emergence of the pro-tumorigenic N2 phenotype increases with tumour growth, to suggest that cancer cells and the surrounding stroma can re-educate neutrophils. The neutrophil itself is a potent source of reactive oxygen species (ROS), arginase, proteases and cytokines that paradoxically can exert a potent immunosuppressive effect on lymphocytes including cytotoxic T cells (CTLs). Indeed, the neutrophil to lymphocyte ratio (NLR) is a systemic biomarker that is elevated in lung cancer patients and prognostic for poor survival outcomes. Herein, we review the molecular mechanisms by which neutrophil derived mediators can suppress CTL function. Selective therapeutic strategies designed to suppress pathogenic neutrophils in NSCLC may cooperate with immune checkpoint inhibitors (ICI) to increase CTL killing of cancer cells in the TME.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA