RESUMO
PURPOSE: Functional MRI (fMRI) has well-established uses to inform risks and plan maximally safe approaches in neurosurgery. In the field of brain tumour surgery, however, fMRI is currently in a state of clinical equipoise due to debate around both its sensitivity and specificity. MATERIALS AND METHODS: In this review, we summarise the role and our experience of fMRI in neurosurgery for gliomas and metastases. We discuss nuances in the conduct and interpretation of fMRI that, based on our practise, most directly impact fMRI's usefulness in the neurosurgical setting. RESULTS: Illustrated examples in which fMRI in our hands directly influences the neurosurgical treatment of brain tumours include evaluating the probability and nature of functional risks, especially for language functions. These presurgical risk assessments, in turn, help to predict the resectability of tumours, select or deselect patients for awake surgery, indicate the need for neurophysiological monitoring and guide the optimal use of intra-operative stimulation mapping. A further emerging application of fMRI is in measuring functional adaptation of functional networks after (partial) surgery, of potential use in the timing of further surgery. CONCLUSIONS: In appropriately selected patients with a clearly defined surgical question, fMRI offers a valuable complementary tool in the pre-surgical evaluation of brain tumours. However, there is a great need for standards in the administration and analysis of fMRI as much as in the techniques that it is commonly evaluated against. Surprisingly little data exists that evaluates the accuracy of fMRI not just against complementary methods, but in terms of its ultimate clinical aim of minimising post-surgical morbidity.
Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Mapeamento Encefálico/métodos , Vigília , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Glioma/cirurgiaRESUMO
Objective: To evaluate declarative memory outcomes in medically refractory epilepsy patients who underwent either a highly selective laser ablation of the amygdalohippocampal complex or a conventional open temporal lobe resection. Methods: Post-operative change scores were examined for verbal memory outcome in epilepsy patients who underwent stereotactic laser amygdalohippocampotomy (SLAH: n = 40) or open resection procedures (n = 40) using both reliable change index (RCI) scores and a 1-SD change metric. Results: Using RCI scores, patients undergoing open resection (12/40, 30.0%) were more likely to decline on verbal memory than those undergoing SLAH (2/40 [5.0%], p = 0.0064, Fisher's exact test). Patients with language dominant procedures were much more likely to experience a significant verbal memory decline following open resection (9/19 [47.4%]) compared to laser ablation (2/19 [10.5%], p = 0.0293, Fisher's exact test). 1 SD verbal memory decline frequently occurred in the open resection sample of language dominant temporal lobe patients with mesial temporal sclerosis (8/10 [80.0%]), although it rarely occurred in such patients after SLAH (2/14, 14.3%) (p = 0.0027, Fisher's exact test). Memory improvement occurred significantly more frequently following SLAH than after open resection. Interpretation: These findings suggest that while verbal memory function can decline after laser ablation of the amygdalohippocampal complex, it is better preserved when compared to open temporal lobe resection. Our findings also highlight that the dominant hippocampus is not uniquely responsible for verbal memory. While this is at odds with our simple and common heuristic of the hippocampus in memory, it supports the findings of non-human primate studies showing that memory depends on broader medial and lateral TL regions.
RESUMO
INTRODUCTION: Despite evidence of correspondence with intraoperative stimulation, there remains limited data on MRI diffusion tractography (DT)'s sensitivity to predict morbidity after neurosurgical oncology treatment. Our aims were: (1) evaluate DT against subcortical stimulation mapping and performance changes during and after awake neurosurgery; (2) evaluate utility of early post-operative DT to predict recovery from post-surgical deficits. METHODS: We retrospectively reviewed our first 100 awake neurosurgery procedures using DT- neuronavigation. Intra-operative stimulation and performance outcomes were assessed to classify DT predictions for sensitivity and specificity calculations. Post-operative DT data, available in 51 patients, were inspected for tract damage. RESULTS: 91 adult brain tumor patients (mean 49.2 years, 43 women) underwent 100 awake surgeries with subcortical stimulation between 2014 and 2019. Sensitivity and specificity of pre-operative DT predictions were 92.2% and 69.2%, varying among tracts. Post-operative deficits occurred after 41 procedures (39%), but were prolonged (> 3 months) in only 4 patients (4%). Post-operative DT in general confirmed surgical preservation of tracts. Post-operative DT anticipated complete recovery in a patient with supplementary motor area syndrome, and indicated infarct-related damage to corticospinal fibers associated with delayed, partial recovery in a second patient. CONCLUSIONS: Pre-operative DT provided very accurate predictions of the spatial location of tracts in relation to a tumor. As expected, however, the presence of a tract did not inform its functional status, resulting in variable DT specificity among individual tracts. While prolonged deficits were rare, DT in the immediate post-operative period offered additional potential to monitor neurological deficits and anticipate recovery potential.
Assuntos
Imagem de Tensor de Difusão , Vigília , Mapeamento Encefálico , Craniotomia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos RetrospectivosRESUMO
Large individual differences in how brain networks respond to treatment hinder efforts to personalise treatment in neurological conditions. We used a brain network fingerprinting approach to longitudinally track re-organisation of complementary phonological and semantic language networks in 19 patients before and after brain-tumour surgery. Patient task fingerprints were individually compared to normal networks established in 17 healthy controls. Additionally, pre- and post-operative patient fingerprints were directly compared to assess longitudinal network adaptations. We found that task networks remained stable over time in healthy controls, whereas treatment induced reorganisation in 47.4% of patient fluency networks and 15.8% of semantic networks. How networks adapted after surgery was highly unique; a subset of patients (10%) showed 'normalisation' while others (21%) developed newly atypical networks after treatment. The strongest predictor of adaptation of the fluency network was the presence of clinically reported language symptoms. Our findings indicate a tight coupling between processes disrupting performance and neural network adaptation, the patterns of which appear to be both task- and individually-unique. We propose that connectivity fingerprinting offers potential as a clinical marker to track adaptation of specific functional networks across treatment interventions over time.
Assuntos
Idioma , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Individualidade , Vias Neurais/diagnóstico por imagemRESUMO
PURPOSE: Functional magnetic resonance imaging (fMRI) has an established role in neurosurgical planning; however, ambiguity surrounds the comparative value of resting and task-based fMRI relative to anatomical localization of the sensorimotor cortex. This study was carried out to determine: 1) how often fMRI adds to prediction of motor risks beyond expert neuroradiological review, 2) success rates of presurgical resting and task-based sensorimotor mapping, and 3) the impact of accelerated resting fMRI acquisitions on network detectability. METHODS: Data were collected at 2 centers from 71 patients with a primary brain tumor (31 women; mean age 41.9⯱ 13.9 years) and 14 healthy individuals (6 women; mean age 37.9⯱ 12.7 years). Preoperative 3T MRI included anatomical scans and resting fMRI using unaccelerated (TRâ¯= 3.5â¯s), intermediate (TRâ¯= 1.56â¯s) or high temporal resolution (TRâ¯= 0.72â¯s) sequences. Task fMRI finger tapping data were acquired in 45 patients. Group differences in fMRI reproducibility, spatial overlap and success frequencies were assessed with ttests and χ2-tests. RESULTS: Radiological review identified the central sulcus in 98.6% (70/71) patients. Task-fMRI succeeded in 100% (45/45). Resting fMRI failed to identify a sensorimotor network in up to 10 patients; it succeeded in 97.9% (47/48) of accelerated fMRIs, compared to only 60.9% (14/23) of unaccelerated fMRIs ([Formula: see text](2)â¯= 17.84, pâ¯< 0.001). Of the patients 12 experienced postoperative deterioration, largely predicted by anatomical proximity to the central sulcus. CONCLUSION: The use of fMRI in patients with residual or intact presurgical motor function added value to uncertain anatomical localization in just a single peri-Rolandic glioma case. Resting fMRI showed high correspondence to task localization when acquired with accelerated sequences but offered limited success at standard acquisitions.
Assuntos
Neoplasias Encefálicas , Glioma , Córtex Sensório-Motor , Adulto , Mapeamento Encefálico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Feminino , Glioma/diagnóstico por imagem , Glioma/cirurgia , Humanos , Imageamento por Ressonância Magnética , Masculino , Reprodutibilidade dos Testes , Córtex Sensório-Motor/diagnóstico por imagemRESUMO
OBJECTIVE: Raman spectroscopy is a biophotonic tool that can be used to differentiate between different tissue types. It is nondestructive and no sample preparation is required. The aim of this study was to evaluate the ability of Raman spectroscopy to differentiate between glioma and normal brain when using fresh biopsy samples and, in the case of glioblastomas, to compare the performance of Raman spectroscopy to predict the presence or absence of tumor with that of 5-aminolevulinic acid (5-ALA)-induced fluorescence. METHODS: A principal component analysis (PCA)-fed linear discriminant analysis (LDA) machine learning predictive model was built using Raman spectra, acquired ex vivo, from fresh tissue samples of 62 patients with glioma and 11 glioma-free brain samples from individuals undergoing temporal lobectomy for epilepsy. This model was then used to classify Raman spectra from fresh biopsies from resection cavities after functional guided, supramaximal glioma resection. In cases of glioblastoma, 5-ALA-induced fluorescence at the resection cavity biopsy site was recorded, and this was compared with the Raman spectral model prediction for the presence of tumor. RESULTS: The PCA-LDA predictive model demonstrated 0.96 sensitivity, 0.99 specificity, and 0.99 accuracy for differentiating tumor from normal brain. Twenty-three resection cavity biopsies were taken from 8 patients after supramaximal resection (6 glioblastomas, 2 oligodendrogliomas). Raman spectroscopy showed 1.00 sensitivity, 1.00 specificity, and 1.00 accuracy for predicting tumor versus normal brain in these samples. In the glioblastoma cases, where 5-ALA-induced fluorescence was used, the performance of Raman spectroscopy was significantly better than the predictive value of 5-ALA-induced fluorescence, which showed 0.07 sensitivity, 1.00 specificity, and 0.24 accuracy (p = 0.0009). CONCLUSIONS: Raman spectroscopy can accurately classify fresh tissue samples into tumor versus normal brain and is superior to 5-ALA-induced fluorescence. Raman spectroscopy could become an important intraoperative tool used in conjunction with 5-ALA-induced fluorescence to guide extent of resection in glioma surgery.
RESUMO
Selective laser amygdalohippocampotomy (SLAH) is a minimally invasive surgical treatment for medial temporal lobe epilepsy. Visual field deficits (VFDs) are a significant potential complication. The objective of this study was to determine the relationship between VFDs and potential mechanisms of injury to the optic radiations and lateral geniculate nucleus. We performed a retrospective cross-sectional analysis of 3 patients (5.2%) who developed persistent VFDs after SLAH within our larger series (n = 58), 15 healthy individuals and 10 SLAH patients without visual complications. Diffusion tractography was used to evaluate laser catheter penetration of the optic radiations. Using a complementary approach, we evaluated evidence for focal microstructural tissue damage within the optic radiations and lateral geniculate nucleus. Overablation and potential heat radiation were assessed by quantifying ablation and choroidal fissure CSF volumes as well as energy deposited during SLAH.SLAH treatment parameters did not distinguish VFD patients. Atypically high overlap between the laser catheter and optic radiations was found in 1/3 VFD patients and was accompanied by focal reductions in fractional anisotropy where the catheter entered the lateral occipital white matter. Surprisingly, lateral geniculate tissue diffusivity was abnormal following, but also preceding, SLAH in patients who subsequently developed a VFD (all p = 0.005).In our series, vision-related complications following SLAH, which appear to occur less frequently than following open temporal lobe -surgery, were not directly explained by SLAH treatment parameters. Instead, our data suggest that variations in lateral geniculate structure may influence susceptibility to indirect heat injury from transoccipital SLAH.
Assuntos
Tonsila do Cerebelo/cirurgia , Hipocampo/cirurgia , Terapia a Laser/efeitos adversos , Complicações Pós-Operatórias/etiologia , Técnicas Estereotáxicas/efeitos adversos , Transtornos da Visão/etiologia , Adolescente , Adulto , Idoso , Tonsila do Cerebelo/diagnóstico por imagem , Estudos Transversais , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/cirurgia , Feminino , Seguimentos , Hipocampo/diagnóstico por imagem , Humanos , Terapia a Laser/tendências , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/diagnóstico por imagem , Psicocirurgia/efeitos adversos , Psicocirurgia/tendências , Estudos Retrospectivos , Fatores de Risco , Técnicas Estereotáxicas/tendências , Transtornos da Visão/diagnóstico por imagem , Campos Visuais/fisiologia , Adulto JovemRESUMO
The occurrence of wide-scale neuroplasticity in the injured human brain raises hopes for biomarkers to guide personalised treatment. At the individual level, functional reorganisation has proven challenging to quantify using current techniques that are optimised for population-based analyses. In this cross-sectional study, we acquired functional MRI scans in 44 patients (22 men, 22 women, mean age: 39.4⯱â¯14â¯years) with a language-dominant hemisphere brain tumour prior to surgery and 23 healthy volunteers (11 men, 12 women, mean age: 36.3⯱â¯10.9â¯years) during performance of a verbal fluency task. We applied a recently developed approach to characterise the normal range of functional connectivity patterns during task performance in healthy controls. Next, we statistically quantified differences from the normal in individual patients and evaluated factors driving these differences. We show that the functional connectivity of brain regions involved in language fluency identifies "fingerprints" of brain plasticity in individual patients, not detected using standard task-evoked analyses. In contrast to healthy controls, patients with a tumour in their language dominant hemisphere showed highly variable fingerprints that uniquely distinguished individuals. Atypical fingerprints were influenced by tumour grade and tumour location relative to the typical fluency-activated network. Our findings show how alterations in brain networks can be visualised and statistically quantified from connectivity fingerprints in individual brains. We propose that connectivity fingerprints offer a statistical metric of individually-specific network organisation through which behaviourally-relevant adaptations could be formally quantified and monitored across individuals, treatments and time.
Assuntos
Mapeamento Encefálico/tendências , Encéfalo/diagnóstico por imagem , Idioma , Imageamento por Ressonância Magnética/tendências , Rede Nervosa/diagnóstico por imagem , Plasticidade Neuronal , Adulto , Idoso , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Estudos Transversais , Feminino , Humanos , Individualidade , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Estudos ProspectivosRESUMO
The oncogenes that are expressed in gliomas reprogram particular pathways of glucose, amino acids, and fatty acid metabolism. Mutations in isocitrate dehydrogenase genes (IDH1/2) in diffuse gliomas are associated with abnormally high levels of 2-hydroxyglutarate (2-HG) levels. The aim of this study was to determine whether metabolic reprogramming associated with IDH mutant gliomas leads to additional ¹H MRS-detectable differences between IDH1 and IDH2 mutations, and to identify metabolites correlated with 2-HG. A total of 21 glioma patients (age= 37 ± 11, 13 males) were recruited for magnetic resonance spectroscopy (MRS) using semi-localization by adiabatic selective refocusing pulse sequence at an ultra-high-field (7T). For 20 patients, the tumor mutation subtype was confirmed by immunohistochemistry and DNA sequencing. LCModel analysis was applied for metabolite quantification. A two-sample t-test was used for metabolite comparisons between IDH1 (n = 15) and IDH2 (n = 5) mutant gliomas. The Pearson correlation coefficients between 2-HG and associated metabolites were calculated. A Bonferroni correction was applied for multiple comparison. IDH2 mutant gliomas have a higher level of 2-HG/tCho (total choline=phosphocholine+glycerylphosphorylcholine) (2.48 ± 1.01vs.0.72 ± 0.38, Pc < 0.001) and myo-Inositol/tCho (2.70 ± 0.90 vs. 1.46 ± 0.51, Pc = 0.011) compared to IDH1 mutation gliomas. Associated metabolites, myo-Inositol and glucose+taurine were correlated with 2-HG levels. These results show the improved characterization of the metabolic pathways in IDH1 and IDH2 gliomas for precision medicine.
RESUMO
BACKGROUND: Surgical access to the temporal lobe is complex with many eloquent white fiber tracts, requiring careful preoperative surgical planning. Many microsurgical approaches to the temporal lobes are described, each with their own disadvantages. The adoption of the endoscope in neurosurgery has increased the options available when treating these difficult access tumors. We present our experience of a novel, minimally invasive, endoscopic approach to resect temporal lobe tumors. METHODS: All patients undergoing endoscopic temporal lobe tumor resection between December 1, 2011 and December 1, 2017, with a single surgeon, were included. Tumors were resected through a minicraniotomy using a high-definition rigid endoscope with a 0- and 30-degree viewing angle. Bimanual resection was performed using standard microsurgical technique. RESULTS: There were 45 patients (22 men and 23 women) with a mean age of 53 years. There were 23 (51%) glioblastoma multiforme, 11 (24%) metastases, 7 (16%) astrocytoma, 3 (7%) anaplastic astrocytoma, and 1 (2%) World Health Organization grade I glioneuronal tumor. In 82.2% of cases (37/45), >95% resection was achieved and 42.2% (19/45) of patients achieving gross total resection. CONCLUSIONS: The endoscope has a role in temporal lobe intraparenchymal tumor surgery, especially in 3 illustrative scenarios: 1) medial temporal, parahippocampal-gyrus low-grade nonenhancing gliomas, 2) subcortical high-grade glioma and metastases medial to the sagittal stratum, and 3) recurrent gliomas with cystic resection cavity. The endoscope offers a safe and useful adjunct to the surgeons' armamentarium in brain tumor surgery. A minimally invasive approach also reduces surgical morbidity and length of stay.
Assuntos
Neoplasias Encefálicas/cirurgia , Glioma/cirurgia , Neuroendoscopia/métodos , Lobo Temporal/cirurgia , Adulto , Idoso , Astrocitoma/cirurgia , Neoplasias Encefálicas/secundário , Craniotomia/métodos , Feminino , Glioblastoma/cirurgia , Humanos , Masculino , Microcirurgia/métodos , Pessoa de Meia-Idade , Resultado do TratamentoRESUMO
Magnetic resonance spectroscopic imaging (MRSI) is a promising technique in both experimental and clinical settings. However, to date, MRSI has been hampered by prohibitively long acquisition times and artifacts caused by subject motion and hardware-related frequency drift. In the present study, we demonstrate that density weighted concentric ring trajectory (DW-CRT) k-space sampling in combination with semi-LASER excitation and metabolite-cycling enables high-resolution MRSI data to be rapidly acquired at 3 Tesla. Single-slice full-intensity MRSI data (short echo time (TE) semi-LASER TE = 32 ms) were acquired from 6 healthy volunteers with an in-plane resolution of 5 × 5 mm in 13 min 30 sec using this approach. Using LCModel analysis, we found that the acquired spectra allowed for the mapping of total N-acetylaspartate (median Cramer-Rao Lower Bound [CRLB] = 3%), glutamate+glutamine (8%), and glutathione (13%). In addition, we demonstrate potential clinical utility of this technique by optimizing the TE to detect 2-hydroxyglutarate (long TE semi-LASER, TE = 110 ms), to produce relevant high-resolution metabolite maps of grade III IDH-mutant oligodendroglioma in a single patient. This study demonstrates the potential utility of MRSI in the clinical setting at 3 Tesla.
Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Glutaratos/análise , Espectroscopia de Ressonância Magnética/métodos , Adulto , Idoso , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Feminino , Humanos , MasculinoRESUMO
Abnormally high levels of the 'oncometabolite' 2-hydroxyglutarate (2-HG) occur in many grade II and III gliomas, and correlate with mutations in the genes of isocitrate dehydrogenase (IDH) isoforms. In vivo measurement of 2-HG in patients, using magnetic resonance spectroscopy (MRS), has largely been carried out at 3 T, yet signal overlap continues to pose a challenge for 2-HG detection. To combat this, several groups have proposed MRS methods at ultra-high field (≥7 T) where theoretical increases in signal-to-noise ratio and spectral resolution could improve 2-HG detection. Long echo time (long-TE) semi-localization by adiabatic selective refocusing (semi-LASER) (TE = 110 ms) is a promising method for improved 2-HG detection in vivo at either 3 or 7 T owing to the use of broad-band adiabatic localization. Using previously published semi-LASER methods at 3 and 7 T, this study directly compares the detectability of 2-HG in phantoms and in vivo across nine patients. Cramér-Rao lower bounds (CRLBs) of 2-HG fitting were found to be significantly lower at 7 T (6 ± 2%) relative to 3 T (15 ± 7%) (p = 0.0019), yet were larger at 7 T in an IDH wild-type patient. Although no increase in SNR was detected at 7 T (77 ± 26) relative to 3 T (77 ± 30), the detection of 2-HG was greatly enhanced through an improved spectral profile and increased resolution at 7 T. 7 T had a large effect on pairwise fitting correlations between γ-aminobutyric acid (GABA) and 2-HG (p = 0.004), and resulted in smaller coefficients. The increased sensitivity for 2-HG detection using long-TE acquisition at 7 T may allow for more rapid estimation of 2-HG (within a few spectral averages) together with other associated metabolic markers in glioma.
Assuntos
Glutaratos/metabolismo , Espectroscopia de Ressonância Magnética , Adulto , Neoplasias Encefálicas/metabolismo , Colina/metabolismo , Creatina/metabolismo , Feminino , Glioma/metabolismo , Humanos , Isocitrato Desidrogenase/metabolismo , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
State-of-the-art glioma treatment aims to maximise neuro-oncological benefit while minimising losses in quality of life. Optimising this balance remains hindered by our still limited understanding of information processing in the human brain. To help understand individual differences in functional outcomes following neuro-oncological treatment, we review mounting evidence demonstrating the fundamental role that white matter connections play in complex human behaviour. We focus on selected fibre tracts whose destruction is recognised to elicit predictable behavioural deficits and consider specific indications for non-invasive diffusion MRI tractography, the only existing method to map these fibre tracts in vivo, in the selection and planning of neuro-oncological treatments. Despite remaining challenges, longitudinal tract imaging, in combination with intraoperative testing and neuropsychological evaluation, offers unique opportunities to refine our understanding of human brain organisation in the quest to predict and ultimately reduce the quality of life burden of both surgical and non-surgical first-line neuro-oncological therapies.
Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Imagem de Tensor de Difusão/métodos , Glioma/diagnóstico por imagem , Neoplasias do Sistema Nervoso/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Humanos , Recuperação de Função FisiológicaRESUMO
2-hydroxyglutarate (2-HG) has emerged as a biomarker of tumour cell IDH mutations that may enable the differential diagnosis of glioma patients. At 3 Tesla, detection of 2-HG with magnetic resonance spectroscopy is challenging because of metabolite signal overlap and a spectral pattern modulated by slice selection and chemical shift displacement. Using density matrix simulations and phantom experiments, an optimised semi-LASER scheme (TE = 110 ms) improves localisation of the 2-HG spin system considerably compared to an existing PRESS sequence. This results in a visible 2-HG peak in the in vivo spectra at 1.9 ppm in the majority of IDH mutated tumours. Detected concentrations of 2-HG were similar using both sequences, although the use of semi-LASER generated narrower confidence intervals. Signal overlap with glutamate and glutamine, as measured by pairwise fitting correlation was reduced. Lactate was readily detectable across glioma patients using the method presented here (mean CLRB: (10±2)%). Together with more robust 2-HG detection, long TE semi-LASER offers the potential to investigate tumour metabolism and stratify patients in vivo at 3T.
RESUMO
OBJECTIVES: Patients with temporal lobe epilepsy (TLE) experience significant deficits in category-related object recognition and naming following standard surgical approaches. These deficits may result from a decoupling of core processing modules (e.g., language, visual processing, and semantic memory), due to "collateral damage" to temporal regions outside the hippocampus following open surgical approaches. We predicted that stereotactic laser amygdalohippocampotomy (SLAH) would minimize such deficits because it preserves white matter pathways and neocortical regions that are critical for these cognitive processes. METHODS: Tests of naming and recognition of common nouns (Boston Naming Test) and famous persons were compared with nonparametric analyses using exact tests between a group of 19 patients with medically intractable mesial TLE undergoing SLAH (10 dominant, 9 nondominant), and a comparable series of TLE patients undergoing standard surgical approaches (n=39) using a prospective, nonrandomized, nonblinded, parallel-group design. RESULTS: Performance declines were significantly greater for the patients with dominant TLE who were undergoing open resection versus SLAH for naming famous faces and common nouns (F=24.3, p<0.0001, η2=0.57, and F=11.2, p<0.001, η2=0.39, respectively), and for the patients with nondominant TLE undergoing open resection versus SLAH for recognizing famous faces (F=3.9, p<0.02, η2=0.19). When examined on an individual subject basis, no SLAH patients experienced any performance declines on these measures. In contrast, 32 of the 39 patients undergoing standard surgical approaches declined on one or more measures for both object types (p<0.001, Fisher's exact test). Twenty-one of 22 left (dominant) TLE patients declined on one or both naming tasks after open resection, while 11 of 17 right (nondominant) TLE patients declined on face recognition. SIGNIFICANCE: Preliminary results suggest (1) naming and recognition functions can be spared in TLE patients undergoing SLAH, and (2) the hippocampus does not appear to be an essential component of neural networks underlying name retrieval or recognition of common objects or famous faces.
Assuntos
Tonsila do Cerebelo/cirurgia , Epilepsia do Lobo Temporal/cirurgia , Hipocampo/cirurgia , Transtornos da Linguagem/prevenção & controle , Terapia a Laser/métodos , Transtornos da Memória/prevenção & controle , Reconhecimento Psicológico , Cirurgia Assistida por Computador/métodos , Adulto , Face , Lateralidade Funcional , Humanos , Idioma , Transtornos da Linguagem/etiologia , Terapia a Laser/efeitos adversos , Imageamento por Ressonância Magnética , Transtornos da Memória/etiologia , Pessoa de Meia-Idade , Testes Neuropsicológicos , Reconhecimento Visual de Modelos , Técnicas Estereotáxicas , Resultado do Tratamento , Adulto JovemRESUMO
Voltage-gated potassium channel complex antibodies, particularly those directed against leucine-rich glioma inactivated 1, are associated with a common form of limbic encephalitis that presents with cognitive impairment and seizures. Faciobrachial dystonic seizures have recently been reported as immunotherapy-responsive, brief, frequent events that often predate the cognitive impairment associated with this limbic encephalitis. However, these observations were made from a retrospective study without serial cognitive assessments. Here, we undertook the first prospective study of faciobrachial dystonic seizures with serial assessments of seizure frequencies, cognition and antibodies in 10 cases identified over 20 months. We hypothesized that (i) faciobrachial dystonic seizures would show a differential response to anti-epileptic drugs and immunotherapy; and that (ii) effective treatment of faciobrachial dystonic seizures would accelerate recovery and prevent the development of cognitive impairment. The 10 cases expand both the known age at onset (28 to 92 years, median 68) and clinical features, with events of longer duration, simultaneously bilateral events, prominent automatisms, sensory aura, and post-ictal fear and speech arrest. Ictal epileptiform electroencephalographic changes were present in three cases. All 10 cases were positive for voltage-gated potassium channel-complex antibodies (346-4515 pM): nine showed specificity for leucine-rich glioma inactivated 1. Seven cases had normal clinical magnetic resonance imaging, and the cerebrospinal fluid examination was unremarkable in all seven tested. Faciobrachial dystonic seizures were controlled more effectively with immunotherapy than anti-epileptic drugs (P = 0.006). Strikingly, in the nine cases who remained anti-epileptic drug refractory for a median of 30 days (range 11-200), the addition of corticosteroids was associated with cessation of faciobrachial dystonic seizures within 1 week in three and within 2 months in six cases. Voltage-gated potassium channel-complex antibodies persisted in the four cases with relapses of faciobrachial dystonic seizures during corticosteroid withdrawal. Time to recovery of baseline function was positively correlated with time to immunotherapy (r = 0.74; P = 0.03) but not time to anti-epileptic drug administration (r = 0.55; P = 0.10). Of 10 cases, the eight cases who received anti-epileptic drugs (n = 3) or no treatment (n = 5) all developed cognitive impairment. By contrast, the two who did not develop cognitive impairment received immunotherapy to treat their faciobrachial dystonic seizures (P = 0.02). In eight cases without clinical magnetic resonance imaging evidence of hippocampal signal change, cross-sectional volumetric magnetic resonance imaging post-recovery, after accounting for age and head size, revealed cases (n = 8) had smaller brain volumes than healthy controls (n = 13) (P < 0.001). In conclusion, faciobrachial dystonic seizures can be prospectively identified as a form of epilepsy with an expanding phenotype. Immunotherapy is associated with excellent control of the frequently anti-epileptic drug refractory seizures, hastens time to recovery, and may prevent the subsequent development of cognitive impairment observed in this study.
Assuntos
Anticorpos/uso terapêutico , Transtornos Cognitivos/prevenção & controle , Convulsões/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Eletroencefalografia/métodos , Feminino , Humanos , Encefalite Límbica/tratamento farmacológico , Encefalite Límbica/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Prospectivos , Convulsões/imunologia , Convulsões/fisiopatologia , Resultado do TratamentoRESUMO
This study aims to demonstrate that the left and right anterior temporal lobes (ATLs) perform critical but unique roles in famous face identification, with damage to either leading to differing deficit patterns reflecting decreased access to lexical or semantic concepts but not their degradation. Famous face identification was studied in 22 presurgical and 14 postsurgical temporal lobe epilepsy (TLE) patients and 20 healthy comparison subjects using free recall and multiple choice (MC) paradigms. Right TLE patients exhibited presurgical deficits in famous face recognition, and postsurgical deficits in both famous face recognition and familiarity judgments. However, they did not exhibit any problems with naming before or after surgery. In contrast, left TLE patients demonstrated both pre- and postsurgical deficits in famous face naming but no significant deficits in recognition or familiarity. Double dissociations in performance between groups were alleviated by altering task demands. Postsurgical right TLE patients provided with MC options correctly identified greater than 70% of famous faces they initially rated as unfamiliar. Left TLE patients accurately chose the name for nearly all famous faces they recognized (based on their verbal description) but initially failed to name, although they tended to rapidly lose access to this name. We believe alterations in task demands activate alternative routes to semantic and lexical networks, demonstrating that unique pathways to such stored information exist, and suggesting a different role for each ATL in identifying visually presented famous faces. The right ATL appears to play a fundamental role in accessing semantic information from a visual route, with the left ATL serving to link semantic information to the language system to produce a specific name. These findings challenge several assumptions underlying amodal models of semantic memory, and provide support for the integrated multimodal theories of semantic memory and a distributed representation of concepts.
Assuntos
Epilepsia do Lobo Temporal/psicologia , Face , Memória/fisiologia , Reconhecimento Psicológico/fisiologia , Adulto , Idade de Início , Escolaridade , Epilepsia do Lobo Temporal/cirurgia , Pessoas Famosas , Feminino , Lateralidade Funcional/fisiologia , Humanos , Testes de Inteligência , Imageamento por Ressonância Magnética , Masculino , Modelos Neurológicos , Neuroimagem , Testes Neuropsicológicos , Procedimentos Neurocirúrgicos , Tomografia por Emissão de Pósitrons , Desempenho Psicomotor/fisiologia , Tomografia Computadorizada de Emissão de Fóton ÚnicoRESUMO
Understanding functional plasticity in memory networks associated with temporal lobe epilepsy (TLE) is central to predicting memory decline following surgery. However, the extent of functional reorganization within memory networks remains unclear. In this preliminary study, we used novel analysis methods assessing network-level changes across the brain during memory task performance in patients with TLE to test the hypothesis that hippocampal functions may not readily shift between hemispheres, but instead may show altered intra-hemispheric organization with unilateral damage. In addition, we wished to relate functional differences to structural changes along specific fibre pathways associated with memory function. Nine pre-operative patients with intractable left TLE and 10 healthy controls underwent functional MRI during complex scene encoding. Diffusion tensor imaging was additionally performed in the same patients. In our study, we found no evidence of inter-hemispheric shifts in memory-related activity in TLE using standard general linear model analysis. However, tensor independent component analysis revealed significant reductions in functional connectivity between bilateral MTL, occipital and left orbitofrontal regions among others in left TLE. This altered orbitofrontal activity was directly related to measures of fornix tract coherence in patients (P < 0.05). Our results suggest that specific fibre pathways, potentially affected by MTL neurodegeneration, may play a central role in functional plasticity in TLE and highlight the importance of network-based analysis approaches. Relative to standard model-based methods, novel objective functional connectivity analyses may offer improved sensitivity to subtle changes in the distribution of memory functions relevant for surgical planning in TLE.