Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Evolution ; 78(1): 127-145, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37919254

RESUMO

Flea beetles of the genus Psylliodes have evolved specialized interactions with plant species belonging to several distantly related families, mainly Brassicaceae, Solanaceae, and Fagaceae. This diverse host use indicates that Psylliodes flea beetles are able to cope with different chemical defense metabolites, including glucosinolates, the characteristic defense metabolites of Brassicaceae. Here we investigated the evolution of host use and the emergence of a glucosinolate-specific detoxification mechanism in Psylliodes flea beetles. In phylogenetic analyses, Psylliodes species clustered into four major clades, three of which contained mainly species specialized on either Brassicaceae, Solanaceae, or Fagaceae. Most members of the fourth clade have broader host use, including Brassicaceae and Poaceae as major host plant families. Ancestral state reconstructions suggest that Psylliodes flea beetles were initially associated with Brassicaceae and then either shifted to Solanaceae or Fagaceae, or expanded their host repertoire to Poaceae. Despite a putative ancestral association with Brassicaceae, we found evidence that the evolution of glucosinolate-specific detoxification enzymes coincides with the radiation of Psylliodes on Brassicaceae, suggesting that these are not required for using Brassicaceae as hosts but could improve the efficiency of host use by specialized Psylliodes species.


Assuntos
Brassicaceae , Besouros , Animais , Brassicaceae/genética , Brassicaceae/metabolismo , Besouros/genética , Filogenia , Glucosinolatos/metabolismo
2.
Biomolecules ; 13(10)2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37892230

RESUMO

The larval stages of the tobacco budworm, Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae), are parasitized by the endophagous parasitoid wasp, Toxoneuron nigriceps (Viereck) (Hymenoptera: Braconidae). During the injections of eggs, this parasitoid wasp also injects into the host body the secretion of the venom gland and the calyx fluid, which contains a polydnavirus (T. nigriceps BracoVirus: TnBV) and the Ovarian calyx fluid Proteins (OPs). The effects of the OPs on the host immune system have recently been described. In particular, it has been demonstrated that the OPs cause hemocytes to undergo a number of changes, such as cellular oxidative stress, actin cytoskeleton modifications, vacuolization, and the inhibition of hemocyte encapsulation capacity, which results in both a loss of hemocyte functionality and cell death. In this study, by using a combined transcriptomic and proteomic analysis, the main components of T. nigriceps ovarian calyx fluid proteins were identified and their possible role in the parasitic syndrome was discussed. This study provides useful information to support the analysis of the function of ovarian calyx fluid proteins, to better understand T. nigriceps parasitization success and for a more thorough understanding of the components of ovarian calyx fluid proteins and their potential function in combination with other parasitoid factors.


Assuntos
Mariposas , Poríferos , Vespas , Animais , Transcriptoma , Proteômica , Larva
3.
Nat Commun ; 14(1): 3666, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380635

RESUMO

Green leaf volatiles (GLVs) are short-chain oxylipins that are emitted from plants in response to stress. Previous studies have shown that oral secretions (OS) of the tobacco hornworm Manduca sexta, introduced into plant wounds during feeding, catalyze the re-arrangement of GLVs from Z-3- to E-2-isomers. This change in the volatile signal however is bittersweet for the insect as it can be used by their natural enemies, as a prey location cue. Here we show that (3Z):(2E)-hexenal isomerase (Hi-1) in M. sexta's OS catalyzes the conversion of the GLV Z-3-hexenal to E-2-hexenal. Hi-1 mutants that were raised on a GLV-free diet showed developmental disorders, indicating that Hi-1 also metabolizes other substrates important for the insect's development. Phylogenetic analysis placed Hi-1 within the GMCß-subfamily and showed that Hi-1 homologs from other lepidopterans could catalyze similar reactions. Our results indicate that Hi-1 not only modulates the plant's GLV-bouquet but also functions in insect development.


Assuntos
Líquidos Corporais , Manduca , Animais , Filogenia , Catálise , Folhas de Planta
4.
Proc Natl Acad Sci U S A ; 119(51): e2208447119, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36508662

RESUMO

Coevolutionary interactions are responsible for much of the Earth's biodiversity, with key innovations driving speciation bursts on both sides of the interaction. One persistent question is whether macroevolutionary traits identified as key innovations accurately predict functional performance and selection dynamics within species, as this necessitates characterizing their function, investigating their fitness consequences, and exploring the selection dynamics acting upon them. Here, we used CRISPR-Cas9 mediating nonhomologous end joining (NHEJ) in the butterfly species Pieris brassicae to knock out and directly assess the function and fitness impacts of nitrile specifier protein (NSP) and major allergen (MA). These are two closely related genes that facilitate glucosinolate (GSL) detoxification capacity, which is a key innovation in mustard feeding Pierinae butterflies. We find NSP and MA are both required for survival on plants containing GSLs, with expression differences arising in response to variable GSL profiles, concordant with detoxification performance. Importantly, this concordance was only observed when using natural host plants, likely reflecting the complexity of how these enzymes interact with natural plant variation in GSLs and myrosinases. Finally, signatures of positive selection for NSP and MA were detected across Pieris species, consistent with these genes' importance in recent coevolutionary interactions. Thus, the war between these butterflies and their host plants involves more than the mere presence of chemical defenses and detoxification mechanisms, as their regulation and activation represent key components of complex interactions. We find that inclusion of these dynamics, in ecologically relevant assays, is necessary for coevolutionary insights in this system and likely others.


Assuntos
Borboletas , Animais , Borboletas/fisiologia , Mostardeira/genética , Mostardeira/metabolismo , Glucosinolatos/metabolismo , Óleos de Plantas
5.
Biomedicines ; 9(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34356883

RESUMO

Assassin bug venoms are potent and exert diverse biological functions, making them potential biomedical goldmines. Besides feeding functions on arthropods, assassin bugs also use their venom for defense purposes causing localized and systemic reactions in vertebrates. However, assassin bug venoms remain poorly characterized. We collected the venom from the assassin bug Rhynocoris iracundus and investigated its composition and bioactivity in vitro and in vivo. It caused lysis of murine neuroblastoma, hepatoma cells, and healthy murine myoblasts. We demonstrated, for the first time, that assassin bug venom induces neurolysis and suggest that it counteracts paralysis locally via the destruction of neural networks, contributing to tissue digestion. Furthermore, the venom caused paralysis and melanization of Galleria mellonella larvae and pupae, whilst also possessing specific antibacterial activity against Escherichia coli, but not Listeria grayi and Pseudomonas aeruginosa. A combinatorial proteo-transcriptomic approach was performed to identify potential toxins responsible for the observed effects. We identified neurotoxic Ptu1, an inhibitory cystin knot (ICK) toxin homologous to ω-conotoxins from cone snails, cytolytic redulysins homologous to trialysins from hematophagous kissing bugs, and pore-forming hemolysins. Additionally, chitinases and kininogens were found and may be responsible for insecticidal and cytolytic activities. We demonstrate the multifunctionality and complexity of assassin bug venom, which renders its molecular components interesting for potential biomedical applications.

6.
Genes (Basel) ; 12(8)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34440287

RESUMO

The clothes moth Tineola bisselliella is one of a few insects that can digest keratin, leading to the destruction of clothing, textiles and artwork. The mechanism of keratin digestion is not yet fully understood, partly reflecting the lack of publicly available genomic and transcriptomic data. Here we present a high-quality gut transcriptome of T. bisselliella generated from larvae reared on keratin-rich and keratin-free diets. The overall transcriptome consists of 428,221 contigs that were functionally annotated and screened for candidate enzymes involved in keratin utilization. As a mechanism for keratin digestion, we identified cysteine synthases, cystathionine ß-synthases and cystathionine γ-lyases. These enzymes release hydrogen sulfite, which may reduce the disulfide bonds in keratin. The dataset also included 27 differentially expressed contigs with trypsin domains, among which 20 were associated with keratin feeding. Finally, we identified seven collagenases that were upregulated on the keratin-rich diet. In addition to this enzymatic repertoire potentially involved in breaking down keratin, our analysis of poly(A)-enriched and poly(A)-depleted transcripts suggested that T. bisselliella larvae possess an unstable intestinal microbiome that may nevertheless contribute to keratin digestion.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Queratinas/metabolismo , Larva/genética , Lepidópteros/genética , Transcriptoma , Animais , Ontologia Genética , Lepidópteros/crescimento & desenvolvimento
7.
Ecol Evol ; 10(18): 9932-9947, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33005355

RESUMO

The Heteroptera are a diverse suborder of phytophagous, hematophagous, and zoophagous insects. The shift to zoophagy can be traced back to the transformation of salivary glands into venom glands, but the venom is used not only to kill and digest invertebrate prey but also as a defense strategy, mainly against vertebrates. In this study, we used an integrated transcriptomics and proteomics approach to compare the composition of venoms from the anterior main gland (AMG) and posterior main gland (PMG) of the reduviid bugs Platymeris biguttatus L. and Psytalla horrida Stål. In both species, the AMG and PMG secreted distinct protein mixtures with few interspecific differences. PMG venom consisted mostly of S1 proteases, redulysins, Ptu1-like peptides, and uncharacterized proteins, whereas AMG venom contained hemolysins and cystatins. There was a remarkable difference in biological activity between the AMG and PMG venoms, with only PMG venom conferring digestive, neurotoxic, hemolytic, antibacterial, and cytotoxic effects. Proteomic analysis of venom samples revealed the context-dependent use of AMG and PMG venom. Although both species secreted PMG venom alone to overwhelm their prey and facilitate digestion, the deployment of defensive venom was species-dependent. P. biguttatus almost exclusively used PMG venom for defense, whereas P. horrida secreted PMG venom in response to mild harassment but AMG venom in response to more intense harassment. This intriguing context-dependent use of defensive venom indicates that future research should focus on species-dependent differences in venom composition and defense strategies among predatory Heteroptera.

8.
Sci Rep ; 10(1): 16875, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037295

RESUMO

Antimicrobial peptides (AMPs) play a key role in the innate immunity, the first line of defense against bacteria, fungi, and viruses. AMPs are small molecules, ranging from 10 to 100 amino acid residues produced by all living organisms. Because of their wide biodiversity, insects are among the richest and most innovative sources for AMPs. In particular, the insect Hermetia illucens (Diptera: Stratiomyidae) shows an extraordinary ability to live in hostile environments, as it feeds on decaying substrates, which are rich in microbial colonies, and is one of the most promising sources for AMPs. The larvae and the combined adult male and female H. illucens transcriptomes were examined, and all the sequences, putatively encoding AMPs, were analysed with different machine learning-algorithms, such as the Support Vector Machine, the Discriminant Analysis, the Artificial Neural Network, and the Random Forest available on the CAMP database, in order to predict their antimicrobial activity. Moreover, the iACP tool, the AVPpred, and the Antifp servers were used to predict the anticancer, the antiviral, and the antifungal activities, respectively. The related physicochemical properties were evaluated with the Antimicrobial Peptide Database Calculator and Predictor. These analyses allowed to identify 57 putatively active peptides suitable for subsequent experimental validation studies.


Assuntos
Dípteros/imunologia , Dípteros/metabolismo , Larva/imunologia , Larva/metabolismo , Proteínas Citotóxicas Formadoras de Poros/imunologia , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Algoritmos , Animais , Antifúngicos , Antineoplásicos , Antivirais , Fenômenos Químicos , Feminino , Imunidade Inata , Aprendizado de Máquina , Masculino , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Transcriptoma
9.
Arch Insect Biochem Physiol ; 104(1): e21657, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31960991

RESUMO

The European map butterfly (Araschnia levana) is a well-known example of seasonal polyphenism because the spring and summer imagoes exhibit distinct morphological phenotypes. The day length and temperature during larval and prepupal development determine whether spring or summer imagoes emerge after metamorphosis. Inspired by the fundamentally different transcriptomic profiles in prepupae developing from larvae exposed to long days or short days, we postulate that posttranscriptional epigenetic regulators such as microRNAs (miRNAs) may contribute to the epigenetic control of seasonal polyphenism in A. levana. To test this hypothesis, we used microarrays containing over 2,000 insect miRNAs to identify candidate regulators that are differentially expressed in last-instar larvae or pupae developing under long-day or short-day conditions. We used our transcriptomic database to identify potential 3'-untranslated regions of messenger RNAs to predict miRNA targets by considering both base pair complementarity and minimum free energy hybridization. This approach resulted in the identification of multiple targets of miRNAs that were differentially regulated in polyphenic morphs of A. levana including a candidate (miR-2856-3p) regulating the previously identified diapause bioclock protein gene. In conclusion, the expression profiling of miRNAs provided insights into their possible involvement in seasonal polyphenism of A. levana and offer an important resource for further studies.


Assuntos
Borboletas/crescimento & desenvolvimento , Metamorfose Biológica , MicroRNAs/genética , Fotoperíodo , Regiões 3' não Traduzidas , Animais , Borboletas/genética , Borboletas/metabolismo , Epigênese Genética , Larva/genética , Larva/metabolismo , MicroRNAs/metabolismo , Pupa/genética , Pupa/metabolismo , Estações do Ano , Transcriptoma
10.
Dev Comp Immunol ; 103: 103471, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31634521

RESUMO

The comparative analysis of innate immunity across different insect taxa has revealed unanticipated evolutionary plasticity, providing intriguing examples of immunity-related effector gene expansion and loss. Phasmatodea, the stick and leaf insects, is an order of hemimetabolous insects that can provide insight into ancestral innate immunity genes lost by later insect clades. We injected the stick insect Peruphasma schultei with a mixture of microbial elicitors to activate a strong immune response, followed by RNA-Seq analysis to screen for induced immunity-related effector genes. This revealed a highly diverse spectrum of antimicrobial peptides (AMPs) belonging to the attacin, coleoptericin, defensin, thaumatin, and tachystatin families. In addition, we identified a large group of short, cysteine-rich putative AMPs, some of which were strongly elicited. The immunity-related effector gene repertoire also included c-type and i-type lysozymes and several pattern-recognition proteins, such as proteins that recognize Gram-negative bacteria and peptidoglycans. Finally, we identified 45 hemolymph lipopolysaccharide-binding protein sequences, an unusually large number for insects. Taken together, our results indicate that at least some phasmids synthesize a broad spectrum of diverse AMPs that deserve further in-depth analysis.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Imunidade Inata/imunologia , Proteínas de Insetos/imunologia , Insetos/imunologia , Animais
11.
Toxins (Basel) ; 11(12)2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835557

RESUMO

Within mega-diverse Hymenoptera, non-aculeate parasitic wasps represent 75% of all hymenopteran species. Their ovipositor dual-functionally injects venom and employs eggs into (endoparasitoids) or onto (ectoparasitoids) diverse host species. Few endoparasitoid wasps such as Pimpla turionellae paralyze the host and suppress its immune responses, such as encapsulation and melanization, to guarantee their offspring's survival. Here, the venom and its possible biology and function of P. turionellae are characterized in comparison to the few existing proteo-transcriptomic analyses on parasitoid wasp venoms. Multiple transcriptome assembly and custom-tailored search and annotation strategies were applied to identify parasitoid venom proteins. To avoid false-positive hits, only transcripts were finally discussed that survived strict filter settings, including the presence in the proteome and higher expression in the venom gland. P. turionella features a venom that is mostly composed of known, typical parasitoid enzymes, cysteine-rich peptides, and other proteins and peptides. Several venom proteins were identified and named, such as pimplin2, 3, and 4. However, the specification of many novel candidates remains difficult, and annotations ambiguous. Interestingly, we do not find pimplin, a paralytic factor in Pimpla hypochondriaca, but instead a new cysteine inhibitor knot (ICK) family (pimplin2), which is highly similar to known, neurotoxic asilid1 sequences from robber flies.


Assuntos
Venenos de Vespas/química , Venenos de Vespas/genética , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Evolução Biológica , Feminino , Perfilação da Expressão Gênica , Masculino , Proteoma , Proteômica , Transcriptoma , Vespas/genética
12.
J Insect Sci ; 19(3)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31225881

RESUMO

Prothoracicotropic hormone (PTTH) is a neuropeptide that triggers a cascade of events within the prothoracic gland (PG) cells, leading to the activation of all the crucial enzymes involved in ecdysone biosynthesis, the main insect steroid hormone. Studies concerning ecdysteroidogenesis predicted PTTH action using brain extract (BE), consisting in a complex mixture in which some components positively or negatively interfere with PTTH-stimulated ecdysteroidogenesis. Consequently, the integration of these opposing factors in steroidogenic tissues leads to a complex secretory pattern. A recombinant form of prothoracicotropic hormone (rPTTH) from the tobacco budworm Heliothis virescens (F.) (Lepidoptera: Noctuidae) was expressed and purified to perform in vitro tests in a standard and repeatable manner. A characterization of rPTTH primary and secondary structures was performed. The ability of rPTTH and H. virescens BE to stimulate ecdysteroidogenesis was investigated on the third day of fifth larval stage. rPTTH activity was compared with the BE mixture by enzyme immunoassay and western blot, revealing that they equally stimulate the production of significant amount of ecdysone, through a transduction cascade that includes the TOR pathway, by the phosphorylation of 4E binding protein (4E-BP) and S6 kinase (S6K), the main targets of TOR protein. The results of these experiments suggest the importance of obtaining a functional pure hormone to perform further studies, not depending on the crude brain extract, composed by different elements and susceptible to different uncontrollable variables.


Assuntos
Ecdisteroides/biossíntese , Hormônios de Inseto/farmacologia , Mariposas/metabolismo , Extratos de Tecidos/farmacologia , Animais , Encéfalo , Hormônios de Inseto/isolamento & purificação , Mariposas/efeitos dos fármacos
13.
Front Physiol ; 10: 137, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30886585

RESUMO

Parents invest in their offspring by transmitting acquired resistance against pathogens that only the parents have encountered, a phenomenon known as trans-generational immune priming (TGIP). Examples of TGIP are widespread in the animal kingdom. Female vertebrates achieve TGIP by passing antibodies to their offspring, but the mechanisms of sex-specific TGIP in invertebrates are unclear despite increasing evidence suggesting that both male-specific and female-specific TGIP occurs in insects. We used the tobacco hornworm (Manduca sexta) to investigate sex-specific TGIP in insects because it is a model host for the analysis of insect immunity and the complete genome sequence is available. We found that feeding larvae with non-pathogenic Escherichia coli or the entomopathogen Serratia entomophila triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation. Maternal TGIP was mediated by the translocation of bacterial structures from the gut lumen to the eggs, resulting in the microbe-specific transcriptional reprogramming of genes encoding immunity-related effector molecules and enzymes involved in the regulation of histone acetylation as well as DNA methylation in larvae of the F1 generation. The third-instar F1 larvae displayed sex-specific differences in the expression profiles of immunity-related genes and DNA methylation. We observed crosstalk between histone acetylation and DNA methylation, which mediated sex-specific immune responses in the F1 generation derived from parents exposed to a bacterial challenge. Multiple routes for TGIP seem to exist in M. sexta and - partially sex-specific - effects in the offspring depend on the microbial exposure history of their parents. Crucially, the entomopathogen S. entomophila appears to be capable of interfering with TGIP in the host.

14.
Front Physiol ; 9: 1678, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534083

RESUMO

Polydnaviruses (PDVs) are obligate symbionts of endoparasitoid wasps, which exclusively attack the larval stages of their lepidopteran hosts. The Polydnavirus is injected by the parasitoid female during oviposition to selectively infect host tissues by the expression of viral genes without undergoing replication. Toxoneuron nigriceps bracovirus (TnBV) is associated with Toxoneuron nigriceps (Hymenoptera: Braconidae) wasp, an endoparasitoid of the tobacco budworm larval stages, Heliothis virescens (Lepidoptera: Noctuidae). Previous studies showed that TnBV is responsible for alterations in host physiology. The arrest of ecdysteroidogenesis is the main alteration which occurs in last (fifth) instar larvae and, as a consequence, prevents pupation. TnBV induces the functional inactivation of H. virescens prothoracic glands (PGs), resulting in decreased protein synthesis and phosphorylation. Previous work showed the involvement of the PI3K/Akt/TOR pathway in H. virescens PG ecdysteroidogenesis. Here, we demonstrate that this cellular signaling is one of the targets of TnBV infection. Western blot analysis and enzyme immunoassay (EIA) showed that parasitism inhibits ecdysteroidogenesis and the phosphorylation of the two targets of TOR (4E-BP and S6K), despite the stimulation of PTTH contained in the brain extract. Using a transcriptomic approach, we identified viral genes selectively expressed in last instar H. virescens PGs, 48 h after parasitization, and evaluated expression levels of PI3K/Akt/TOR pathway genes in these tissues. The relative expression of selected genes belonging to the TOR pathway (tor, 4e-bp, and s6k) in PGs of parasitized larvae was further confirmed by qRT-PCR. The down-regulation of these genes in PGs of parasitized larvae supports the hypothesis of TnBV involvement in blocking ecdysteroidogenesis, through alterations of the PI3K/Akt/TOR pathway at the transcriptional level.

15.
Ecol Evol ; 8(10): 4891-4898, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29876067

RESUMO

The bivoltine European map butterfly (Araschnia levana) displays seasonal polyphenism characterized by the formation of two remarkably distinct dorsal wing phenotypes: The spring generation (A. levana levana) is predominantly orange with black spots and develops from diapause pupae, whereas the summer generation (A. levana prorsa) has black, white, and orange bands and develops from subitaneous pupae. The choice between spring or summer imagoes is regulated by the photoperiod during larval and prepupal development, but polyphenism in the larvae has not been investigated before. Recently, it has been found that the prepupae of A. levana display differences in immunity-related gene expression, so we tested whether larvae destined to become spring (short-day) or summer (long-day) morphs also display differences in innate immunity. We measured larval survival following the injection of a bacterial entomopathogen (Pseudomonas entomophila), the antimicrobial activity in their hemolymph and the induced expression of selected genes encoding antimicrobial peptides (AMPs). Larvae of the short-day generation died significantly later, exhibited higher antibacterial activity in the hemolymph, and displayed higher induced expression levels of AMPs than those of the long-day generation. Our study expands the seasonal polyphenism of A. levana beyond the morphologically distinct spring and summer imagoes to include immunological larval polyphenism that reveals the photoperiodic modulation of immunity. This may reflect life-history traits that manifest as trade-offs between immunity and fecundity.

16.
Sci Rep ; 8(1): 3600, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29483515

RESUMO

The harlequin ladybird Harmonia axyridis has emerged as a model species in the context of invasion biology and possesses an expanded repertoire of antimicrobial peptides (AMPs). Here we measured the expression of 22 AMP genes in adult beetles from native and introduced populations, and from a biocontrol population, allowing us to compare populations differing in terms of invasive performance. Strikingly, we observed population-specific expression profiles for particular AMPs. Following an immune challenge, the genes for Coleoptericin1 (Col1), Coleoptericin-likeB and Defensin1 were induced up to several thousand times more strongly in the invasive populations compared to the native and biocontrol populations. To determine the role of Col1 in pathogen resistance, the corresponding gene was silenced by RNA interference (RNAi), causing higher mortality in beetles subsequently infected with the entomopathogen Pseudomonas entomophila. The RNAi-triggered susceptibility to this pathogen was reversed by the injection of a synthetic Col1 peptide. We show that a native population is more susceptible to P. entomomophila infection than an invasive population. This is the first study demonstrating population-specific differences in the immune system of an invasive species and suggests that rapid gene expression changes and a highly adaptive immune system could promote pathogen resistance and thereby invasive performance.


Assuntos
Anti-Infecciosos/farmacologia , Besouros/microbiologia , Peptídeos/farmacologia , Animais , Espécies Introduzidas , Pseudomonas/efeitos dos fármacos , Pseudomonas/patogenicidade , Interferência de RNA
17.
Sci Rep ; 7(1): 11775, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28924205

RESUMO

Toxoneuron nigriceps (Hymenoptera, Braconidae) is an endophagous parasitoid of the larval stages of the tobacco budworm, Heliothis virescens (Lepidoptera, Noctuidae). The bracovirus associated with this wasp (TnBV) is currently being studied. Several genes expressed in parasitised host larvae have been isolated and their possible roles partly elucidated. TnBVank1 encodes an ankyrin motif protein similar to insect and mammalian IκB, an inhibitor of the transcription nuclear factor κB (NF-κB). Here we show that, when TnBVank1 was stably expressed in polyclonal Drosophila S2 cells, apoptosis is induced. Furthermore, we observed the same effects in haemocytes of H. virescens larvae, after TnBVank1 in vivo transient transfection, and in haemocytes of parasitised larvae. Coimmunoprecipitation experiments showed that TnBVANK1 binds to ALG-2 interacting protein X (Alix/AIP1), an interactor of apoptosis-linked gene protein 2 (ALG-2). Using double-immunofluorescence labeling, we observed the potential colocalization of TnBVANK1 and Alix proteins in the cytoplasm of polyclonal S2 cells. When Alix was silenced by RNA interference, TnBVANK1 was no longer able to cause apoptosis in both S2 cells and H. virescens haemocytes. Collectively, these results indicate that TnBVANK1 induces apoptosis by interacting with Alix, suggesting a role of TnBVANK1 in the suppression of host immune response observed after parasitisation by T. nigriceps.


Assuntos
Apoptose , Hemócitos , Lepidópteros/metabolismo , Lepidópteros/virologia , Polydnaviridae/metabolismo , Proteínas Virais/metabolismo , Animais , Hemócitos/metabolismo , Hemócitos/virologia , Lepidópteros/genética , Polydnaviridae/genética , Proteínas Virais/genética
18.
Insect Biochem Mol Biol ; 78: 69-77, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27687846

RESUMO

Gossypol is a polyphenolic secondary metabolite produced by cotton plants, which is toxic to many organisms. Gossypol's aldehyde groups are especially reactive, forming Schiff bases with amino acids of proteins and cross-linking them, inhibiting enzyme activities and contributing to toxicity. Very little is known about gossypol's mode of action and its detoxification in cotton-feeding insects that can tolerate certain concentrations of this compound. Here, we tested the toxicity of gossypol and a gossypol derivative lacking free aldehyde groups (SB-gossypol) toward Helicoverpa armigera and Heliothis virescens, two important pests on cotton plants. Larval feeding studies with these two species on artificial diet supplemented with gossypol or SB-gossypol revealed no detectable toxicity of gossypol, when the aldehyde groups were absent. A cytochrome P450 enzyme, CYP6AE14, is upregulated in H. armigera feeding on gossypol, and has been claimed to directly detoxify gossypol. However, using in vitro assays with heterologously expressed CYP6AE14, no metabolites of gossypol were detected, and further studies suggest that gossypol is not a direct substrate of CYP6AE14. Furthermore, larvae feeding on many other plant toxins also upregulate CYP6AE14. Our data demonstrate that the aldehyde groups are critical for the toxicity of gossypol when ingested by H. armigera and H. virescens larvae, and suggest that CYP6AE14 is not directly involved in gossypol metabolism, but may play a role in the general stress response of H. armigera larvae toward plant toxins.


Assuntos
Família 6 do Citocromo P450/genética , Gossipol/metabolismo , Proteínas de Insetos/genética , Larva/metabolismo , Mariposas/metabolismo , Animais , Família 6 do Citocromo P450/metabolismo , Inativação Metabólica , Proteínas de Insetos/metabolismo , Larva/crescimento & desenvolvimento , Mariposas/crescimento & desenvolvimento
19.
Insect Biochem Mol Biol ; 76: 118-147, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27522922

RESUMO

Manduca sexta, known as the tobacco hornworm or Carolina sphinx moth, is a lepidopteran insect that is used extensively as a model system for research in insect biochemistry, physiology, neurobiology, development, and immunity. One important benefit of this species as an experimental model is its extremely large size, reaching more than 10 g in the larval stage. M. sexta larvae feed on solanaceous plants and thus must tolerate a substantial challenge from plant allelochemicals, including nicotine. We report the sequence and annotation of the M. sexta genome, and a survey of gene expression in various tissues and developmental stages. The Msex_1.0 genome assembly resulted in a total genome size of 419.4 Mbp. Repetitive sequences accounted for 25.8% of the assembled genome. The official gene set is comprised of 15,451 protein-coding genes, of which 2498 were manually curated. Extensive RNA-seq data from many tissues and developmental stages were used to improve gene models and for insights into gene expression patterns. Genome wide synteny analysis indicated a high level of macrosynteny in the Lepidoptera. Annotation and analyses were carried out for gene families involved in a wide spectrum of biological processes, including apoptosis, vacuole sorting, growth and development, structures of exoskeleton, egg shells, and muscle, vision, chemosensation, ion channels, signal transduction, neuropeptide signaling, neurotransmitter synthesis and transport, nicotine tolerance, lipid metabolism, and immunity. This genome sequence, annotation, and analysis provide an important new resource from a well-studied model insect species and will facilitate further biochemical and mechanistic experimental studies of many biological systems in insects.


Assuntos
Expressão Gênica , Genoma de Inseto , Manduca/genética , Animais , Perfilação da Expressão Gênica , Larva/genética , Larva/crescimento & desenvolvimento , Manduca/crescimento & desenvolvimento , Pupa/genética , Pupa/crescimento & desenvolvimento , Análise de Sequência de DNA , Sintenia
20.
Biomed Res Int ; 2016: 8285428, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27119084

RESUMO

Lucilia sericata larvae are used as an alternative treatment for recalcitrant and chronic wounds. Their excretions/secretions contain molecules that facilitate tissue debridement, disinfect, or accelerate wound healing and have therefore been recognized as a potential source of novel therapeutic compounds. Among the substances present in excretions/secretions various peptidase activities promoting the wound healing processes have been detected but the peptidases responsible for these activities remain mostly unidentified. To explore these enzymes we applied next generation sequencing to analyze the transcriptomes of different maggot tissues (salivary glands, gut, and crop) associated with the production of excretions/secretions and/or with digestion as well as the rest of the larval body. As a result we obtained more than 123.8 million paired-end reads, which were assembled de novo using Trinity and Oases assemblers, yielding 41,421 contigs with an N50 contig length of 2.22 kb and a total length of 67.79 Mb. BLASTp analysis against the MEROPS database identified 1729 contigs in 577 clusters encoding five peptidase classes (serine, cysteine, aspartic, threonine, and metallopeptidases), which were assigned to 26 clans, 48 families, and 185 peptidase species. The individual enzymes were differentially expressed among maggot tissues and included peptidase activities related to the therapeutic effects of maggot excretions/secretions.


Assuntos
Dípteros/enzimologia , Enzimas/isolamento & purificação , Proteínas de Insetos/isolamento & purificação , Animais , Análise por Conglomerados , Mapeamento de Sequências Contíguas , Bases de Dados Factuais , Desbridamento/métodos , Enzimas/genética , Perfilação da Expressão Gênica , Proteínas de Insetos/genética , Intestinos/enzimologia , Larva/enzimologia , Peptídeo Hidrolases/química , Proteólise , Pseudomonas aeruginosa , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Glândulas Salivares/enzimologia , Análise de Sequência de RNA , Staphylococcus aureus , Transcriptoma , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA