Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920782

RESUMO

The role of tumor protein 63 (TP63) in regulating insulin receptor substrate 1 (IRS-1) and other downstream signal proteins in diabetes has not been characterized. RNAs extracted from kidneys of diabetic mice (db/db) were sequenced to identify genes that are involved in kidney complications. RNA sequence analysis showed more than 4- to 6-fold increases in TP63 expression in the diabetic mice's kidneys, compared to wild-type mice at age 10 and 12 months old. In addition, the kidneys from diabetic mice showed significant increases in TP63 mRNA and protein expression compared to WT mice. Mouse proximal tubular cells exposed to high glucose (HG) for 48 h showed significant decreases in IRS-1 expression and increases in TP63, compared to cells grown in normal glucose (NG). When TP63 was downregulated by siRNA, significant increases in IRS-1 and activation of AMP-activated protein kinase (AMPK (p-AMPK-Th172)) occurred under NG and HG conditions. Moreover, activation of AMPK by pretreating the cells with AICAR resulted in significant downregulation of TP63 and increased IRS-1 expression. Ad-cDNA-mediated over-expression of tuberin resulted in significantly decreased TP63 levels and upregulation of IRS-1 expression. Furthermore, TP63 knockdown resulted in increased glucose uptake, whereas IRS-1 knockdown resulted in a decrease in the glucose uptake. Altogether, animal and cell culture data showed a potential role of TP63 as a new candidate gene involved in regulating IRS-1 that may be used as a new therapeutic target to prevent kidney complications in diabetes.


Assuntos
Nefropatias Diabéticas/genética , Transativadores/genética , Regulação para Cima/genética , Adenilato Quinase/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Glicemia/metabolismo , Células Cultivadas , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/genética , Nefropatias Diabéticas/sangue , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Túbulos Renais Proximais/patologia , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleotídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transativadores/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/farmacologia , Regulação para Cima/efeitos dos fármacos
2.
Acta Neuropathol ; 139(1): 157-174, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31664505

RESUMO

In Neurofibromatosis type 1, NF1 gene mutations in Schwann cells (SC) drive benign plexiform neurofibroma (PNF), and no additional SC changes explain patient-to-patient variability in tumor number. Evidence from twin studies suggests that variable expressivity might be caused by unidentified modifier genes. Whole exome sequencing of SC and fibroblast DNA from the same resected PNFs confirmed biallelic SC NF1 mutations; non-NF1 somatic SC variants were variable and present at low read number. We identified frequent germline variants as possible neurofibroma modifier genes. Genes harboring variants were validated in two additional cohorts of NF1 patients and by variant burden test. Genes including CUBN, CELSR2, COL14A1, ATR and ATM also showed decreased gene expression in some neurofibromas. ATM-relevant DNA repair defects were also present in a subset of neurofibromas with ATM variants, and in some neurofibroma SC. Heterozygous ATM G2023R or homozygous S707P variants reduced ATM protein expression in heterologous cells. In mice, genetic Atm heterozygosity promoted Schwann cell precursor self-renewal and increased tumor formation in vivo, suggesting that ATM variants contribute to neurofibroma initiation. We identify germline variants, rare in the general population, overrepresented in NF1 patients with neurofibromas. ATM and other identified genes are candidate modifiers of PNF pathogenesis.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Genes da Neurofibromatose 1 , Neurofibroma Plexiforme/genética , Neurofibromatose 1/genética , Animais , Fibroblastos/patologia , Humanos , Camundongos , Mutação de Sentido Incorreto , Neurofibroma Plexiforme/patologia , Neurofibromatose 1/patologia , Células de Schwann/patologia , Sequenciamento do Exoma
3.
Biol Reprod ; 83(6): 979-87, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20739667

RESUMO

During the first wave of spermatogenesis, and in response to ionizing radiation, elevated mutant frequencies are reduced to a low level by unidentified mechanisms. Apoptosis is occurring in the same time frame that the mutant frequency declines. We examined the role of apoptosis in regulating mutant frequency during spermatogenesis. Apoptosis and mutant frequencies were determined in spermatogenic cells obtained from Bax-null or Trp53-null mice. The results showed that spermatogenic lineage apoptosis was markedly decreased in Bax-null mice and was accompanied by a significantly increased spontaneous mutant frequency in seminiferous tubule cells compared to that of wild-type mice. Apoptosis profiles in the seminiferous tubules for Trp53-null were similar to control mice. Spontaneous mutant frequencies in pachytene spermatocytes and in round spermatids from Trp53-null mice were not significantly different from those of wild-type mice. However, epididymal spermatozoa from Trp53-null mice displayed a greater spontaneous mutant frequency compared to that from wild-type mice. A greater proportion of spontaneous transversions and a greater proportion of insertions/deletions 15 days after ionizing radiation were observed in Trp53-null mice compared to wild-type mice. Base excision repair activity in mixed germ cell nuclear extracts prepared from Trp53-null mice was significantly lower than that for wild-type controls. These data indicate that BAX-mediated apoptosis plays a significant role in regulating spontaneous mutagenesis in seminiferous tubule cells obtained from neonatal mice, whereas tumor suppressor TRP53 plays a significant role in regulating spontaneous mutagenesis between postmeiotic round spermatid and epididymal spermatozoon stages of spermiogenesis.


Assuntos
Mutagênese , Espermatogênese , Espermatozoides/metabolismo , Proteína Supressora de Tumor p53/fisiologia , Proteína X Associada a bcl-2/fisiologia , Envelhecimento , Animais , Animais Recém-Nascidos , Apoptose , Reparo do DNA , Raios gama/efeitos adversos , Marcação In Situ das Extremidades Cortadas , Óperon Lac , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutagênese/efeitos da radiação , Túbulos Seminíferos/citologia , Túbulos Seminíferos/efeitos da radiação , Espermatogênese/efeitos da radiação , Fatores de Tempo , Proteína Supressora de Tumor p53/genética , Irradiação Corporal Total/efeitos adversos , Proteína X Associada a bcl-2/genética
4.
Mutat Res ; 615(1-2): 98-110, 2007 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-17208258

RESUMO

Defects in genes that control DNA repair, proliferation, and apoptosis can increase genomic instability, and thus promote malignant progression. Although most tumors that arise in humans with neurofibromatosis type 1 (NF1) are benign, these individuals are at increased risk for malignant peripheral nerve sheath tumors (MPNST). To characterize additional mutations required for the development of MPNST from benign plexiform neurofibromas, we generated a mouse model for these tumors by combining targeted null mutations in Nf1 and p53, in cis. CisNf1+/-; p53+/- mice spontaneously develop PNST, and these tumors exhibit loss-of-heterozygosity at both the Nf1 and p53 loci. Because p53 has well-characterized roles in the DNA damage response, DNA repair, and apoptosis, and because DNA repair genes have been proposed to act as modifiers in NF1, we used the cisNf1+/-; p53+/- mice to determine whether a mutator phenotype arises in NF1-associated malignancies. To quantitate spontaneous mutant frequencies (MF), we crossed the Big Blue mouse, which harbors a lacI transgene, to the cisNf1+/-; p53+/- mice, and isolated genomic DNA from both tumor and normal tissues in compound heterozygotes and wild-type siblings. Many of the PNST exhibited increased mutant frequencies (MF=4.70) when compared to normal peripheral nerve and brain (MF=2.09); mutations occurred throughout the entire lacI gene, and included base substitutions, insertions, and deletions. Moreover, the brains, spleens, and livers of these cisNf1+/-; p53+/- animals exhibited increased mutant frequencies when compared to tissues from wild-type littermates. We conclude that a mild mutator phenotype arises in the tumors and tissues of cisNf1+/-; p53+/- mice, and propose that genomic instability influences NF1 tumor progression and disease severity.


Assuntos
Genes da Neurofibromatose 1 , Mutação , Neurofibromatose 1/genética , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Genes p53 , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Neoplasias de Bainha Neural/genética , Fenótipo , Baço/metabolismo
5.
Cancer Cell ; 7(1): 65-75, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15652750

RESUMO

Benign neurofibromas and malignant peripheral nerve sheath tumors are serious complications of neurofibromatosis type 1. The epidermal growth factor receptor is not expressed by normal Schwann cells, yet is overexpressed in subpopulations of Nf1 mutant Schwann cells. We evaluated the role of EGFR in Schwann cell tumorigenesis. Expression of EGFR in transgenic mouse Schwann cells elicited features of neurofibromas: Schwann cell hyperplasia, excess collagen, mast cell accumulation, and progressive dissociation of non-myelin-forming Schwann cells from axons. Mating EGFR transgenic mice to Nf1 hemizygotes did not enhance this phenotype. Genetic reduction of EGFR in Nf1(+/-);p53(+/-) mice that develop sarcomas significantly improved survival. Thus, gain- and loss-of-function experiments support the relevance of EGFR to peripheral nerve tumor formation.


Assuntos
Receptores ErbB/metabolismo , Neurofibroma/metabolismo , Neurofibromatose 1/metabolismo , Neurofibromatose 1/patologia , Nervos Periféricos/metabolismo , Nervos Periféricos/patologia , Células de Schwann/fisiologia , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/genética , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Animais , Células Cultivadas , Receptores ErbB/genética , Fibrose , Humanos , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias de Tecido Nervoso/genética , Neoplasias de Tecido Nervoso/metabolismo , Neoplasias de Tecido Nervoso/patologia , Neurofibroma/genética , Neurofibroma/patologia , Neurofibromatose 1/genética , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Nervos Periféricos/ultraestrutura , Células de Schwann/citologia , Transdução de Sinais/fisiologia , Taxa de Sobrevida , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA