Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 21(10): e3002371, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37889915

RESUMO

Perez and Sarkies uncover histones as methyl group repositories in normal and cancer human cells, shedding light on an intriguing function of histone methylation in optimizing the cellular methylation potential independently of gene regulation.


Assuntos
Histonas , Neoplasias , Humanos , Histonas/metabolismo , Metilação , Regulação da Expressão Gênica , Neoplasias/genética , Histona Metiltransferases/metabolismo
2.
J Biol Chem ; 292(32): 13197-13204, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28637866

RESUMO

The endoplasmic reticulum (ER)-mitochondria encounter structure (ERMES) is a protein complex that physically tethers the two organelles to each other and creates the physical basis for communication between them. ERMES functions in lipid exchange between the ER and mitochondria, protein import into mitochondria, and maintenance of mitochondrial morphology and genome. Here, we report that ERMES is also required for iron homeostasis. Loss of ERMES components activates an Aft1-dependent iron deficiency response even in iron-replete conditions, leading to accumulation of excess iron inside the cell. This function is independent of known ERMES roles in calcium regulation, phospholipid biosynthesis, or effects on mitochondrial morphology. A mutation in the vacuolar protein sorting 13 (VPS13) gene that rescues the glycolytic phenotype of ERMES mutants suppresses the iron deficiency response and iron accumulation. Our findings reveal that proper communication between the ER and mitochondria is required for appropriate maintenance of cellular iron levels.


Assuntos
Retículo Endoplasmático/metabolismo , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Alelos , Substituição de Aminoácidos , Retículo Endoplasmático/química , Metabolismo Energético , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Homeostase , Ferro/análise , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mitocôndrias/química , Mutação Puntual , Transporte Proteico , RNA Fúngico/química , RNA Fúngico/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Análise de Sequência de RNA , Espectrofotometria Atômica
3.
Oncotarget ; 8(12): 19074-19088, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27894105

RESUMO

Although histone deacetylase inhibitors (HDACi) are a promising class of anti-cancer drugs, thus far, they have been unsuccessful in early phase clinical trials for pancreatic ductal adenocarcinoma (PDAC). One potential reason for their poor efficacy is the tumor stroma, where cancer-associated fibroblasts (CAFs) are a prominent cell type and a source of resistance to cancer therapies. Here, we demonstrate that stromal fibroblasts contribute to the poor efficacy of HDACi's in PDAC. HDACi-treated fibroblasts show increased biological aggressiveness and are characterized by increased secretion of pro-inflammatory tumor-supportive cytokines and chemokines. We find that HDAC2 binds to the enhancer and promoter regions of pro-inflammatory genes specifically in CAFs and in silico analysis identified AP-1 to be the most frequently associated transcription factor bound in these regions. Pharmacologic inhibition of pathways upstream of AP-1 suppresses the HDACi-induced inflammatory gene expression and tumor-supportive responses in fibroblasts. Our findings demonstrate that the combination of HDACi's with chemical inhibitors of the AP-1 signaling pathway attenuate the inflammatory phenotype of fibroblasts and may improve the efficacy of HDACi in PDAC and, potentially, in other solid tumors rich in stroma.


Assuntos
Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/patologia , Inibidores de Histona Desacetilases/farmacologia , Neoplasias Pancreáticas/patologia , Animais , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Imunoprecipitação da Cromatina , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Elife ; 32014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24939988

RESUMO

During eukaryotic evolution, genome size has increased disproportionately to nuclear volume, necessitating greater degrees of chromatin compaction in higher eukaryotes, which have evolved several mechanisms for genome compaction. However, it is unknown whether histones themselves have evolved to regulate chromatin compaction. Analysis of histone sequences from 160 eukaryotes revealed that the H2A N-terminus has systematically acquired arginines as genomes expanded. Insertion of arginines into their evolutionarily conserved position in H2A of a small-genome organism increased linear compaction by as much as 40%, while their absence markedly diminished compaction in cells with large genomes. This effect was recapitulated in vitro with nucleosomal arrays using unmodified histones, indicating that the H2A N-terminus directly modulates the chromatin fiber likely through intra- and inter-nucleosomal arginine-DNA contacts to enable tighter nucleosomal packing. Our findings reveal a novel evolutionary mechanism for regulation of chromatin compaction and may explain the frequent mutations of the H2A N-terminus in cancer.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/química , Evolução Molecular , Histonas/química , Animais , Arginina/química , Linhagem Celular Tumoral , Genoma Fúngico , Células HEK293 , Humanos , Neoplasias/genética , Nucleossomos/química , Nucleossomos/metabolismo , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Xenopus laevis
5.
Mol Cell ; 49(2): 310-21, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23201122

RESUMO

Differences in global levels of histone acetylation occur in normal and cancer cells, although the reason why cells regulate these levels has been unclear. Here we demonstrate a role for histone acetylation in regulating intracellular pH (pH(i)). As pH(i) decreases, histones are globally deacetylated by histone deacetylases (HDACs), and the released acetate anions are coexported with protons out of the cell by monocarboxylate transporters (MCTs), preventing further reductions in pH(i). Conversely, global histone acetylation increases as pH(i) rises, such as when resting cells are induced to proliferate. Inhibition of HDACs or MCTs decreases acetate export and lowers pH(i), particularly compromising pH(i) maintenance in acidic environments. Global deacetylation at low pH is reflected at a genomic level by decreased abundance and extensive redistribution of acetylation throughout the genome. Thus, acetylation of chromatin functions as a rheostat to regulate pH(i) with important implications for mechanism of action and therapeutic use of HDAC inhibitors.


Assuntos
Histonas/metabolismo , Líquido Intracelular/metabolismo , Processamento de Proteína Pós-Traducional , Acetatos , Acetilação , Metabolismo dos Carboidratos , Cromatina , Regulação da Expressão Gênica , Glucose/fisiologia , Glutamina/fisiologia , Células HeLa , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Histonas/genética , Humanos , Concentração de Íons de Hidrogênio , Ácidos Hidroxâmicos/farmacologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Niacinamida/farmacologia , Ácido Pirúvico/metabolismo , Análise de Sequência de RNA , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA