Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Development ; 150(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37254876

RESUMO

RAS/MAPK gene dysfunction underlies various cancers and neurocognitive disorders. Although the roles of RAS/MAPK genes have been well studied in cancer, less is known about their function during neurodevelopment. There are many genes that work in concert to regulate RAS/MAPK signaling, suggesting that if common brain phenotypes could be discovered they could have a broad impact on the many other disorders caused by distinct RAS/MAPK genes. We assessed the cellular and molecular consequences of hyperactivating the RAS/MAPK pathway using two distinct genes in a cell type previously implicated in RAS/MAPK-mediated cognitive changes, cortical GABAergic interneurons. We uncovered some GABAergic core programs that are commonly altered in each of the mutants. Notably, hyperactive RAS/MAPK mutants bias developing cortical interneurons towards those that are somatostatin positive. The increase in somatostatin-positive interneurons could also be prevented by pharmacological inhibition of the core RAS/MAPK signaling pathway. Overall, these findings present new insights into how different RAS/MAPK mutations can converge on GABAergic interneurons, which may be important for other RAS/MAPK genes and related disorders.


Assuntos
Transdução de Sinais , Somatostatina , Alelos , Somatostatina/genética , Somatostatina/metabolismo , Transdução de Sinais/genética , Sistema de Sinalização das MAP Quinases/genética , Interneurônios/metabolismo , Neurônios GABAérgicos/metabolismo
2.
Cells ; 13(1)2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38201256

RESUMO

The mammalian target of rapamycin (mTOR) signaling pathway is a powerful regulator of cell proliferation, growth, synapse maintenance and cell fate. While intensely studied for its role in cancer, the role of mTOR signaling is just beginning to be uncovered in specific cell types that are implicated in neurodevelopmental disorders. Previously, loss of the Tsc1 gene, which results in hyperactive mTOR, was shown to affect the function and molecular properties of GABAergic cortical interneurons (CINs) derived from the medial ganglionic eminence. To assess if other important classes of CINs could be impacted by mTOR dysfunction, we deleted Tsc1 in a caudal ganglionic eminence-derived interneuron group, the vasoactive intestinal peptide (VIP)+ subtype, whose activity disinhibits local circuits. Tsc1 mutant VIP+ CINs reduced their pattern of apoptosis from postnatal days 15-20, resulting in increased VIP+ CINs. The mutant CINs exhibited synaptic and electrophysiological properties that could contribute to the high rate of seizure activity in humans that harbor Tsc1 mutations.


Assuntos
Transtornos do Neurodesenvolvimento , Peptídeo Intestinal Vasoativo , Humanos , Apoptose , Interneurônios , Serina-Treonina Quinases TOR
3.
Waste Manag ; 138: 172-179, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896737

RESUMO

Aluminium laminated (AL) pouch packages and aluminium laminated Tetra-Pak cartons are considered unrecyclable, reducing their otherwise excellent lifecycle performance. This paper describes experimental results on pilot plant trials to recycle AL packages with a molten metal pyrolysis reactor. The experimental evidence shows that both package formats can be recycled and that clean aluminium can be recovered. However, the recovered aluminium from Al pouches may require mechanical cleaning as the consumer's information is printed onto the aluminium, leaving a carbon residue on the recovered aluminium. On the other hand, over 90% of the polypropylene plastic layer on the AL packaging pyrolysed into waxes, pointing to excellent kinetics. Moreover, an economic analysis of a 4,000 t/y commercial-scale plant demonstrates that a molten metal AL recycling plant is economically viable, achieving an internal rate of return (IRR) of over 20%.


Assuntos
Alumínio , Pirólise , Plásticos , Embalagem de Produtos , Reciclagem
4.
Elife ; 102021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34605404

RESUMO

Enhancers are cis-regulatory elements that play critical regulatory roles in modulating developmental transcription programs and driving cell-type-specific and context-dependent gene expression in the brain. The development of massively parallel reporter assays (MPRAs) has enabled high-throughput functional screening of candidate DNA sequences for enhancer activity. Tissue-specific screening of in vivo enhancer function at scale has the potential to greatly expand our understanding of the role of non-coding sequences in development, evolution, and disease. Here, we adapted a self-transcribing regulatory element MPRA strategy for delivery to early postnatal mouse brain via recombinant adeno-associated virus (rAAV). We identified and validated putative enhancers capable of driving reporter gene expression in mouse forebrain, including regulatory elements within an intronic CACNA1C linkage disequilibrium block associated with risk in neuropsychiatric disorder genetic studies. Paired screening and single enhancer in vivo functional testing, as we show here, represents a powerful approach towards characterizing regulatory activity of enhancers and understanding how enhancer sequences organize gene expression in the brain.


Assuntos
Encéfalo/metabolismo , Elementos Facilitadores Genéticos , Animais , Encéfalo/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos
5.
Genes (Basel) ; 12(4)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806076

RESUMO

Ornithine decarboxylase 1 (ODC1 gene) has been linked through gain-of-function variants to a rare disease featuring developmental delay, alopecia, macrocephaly, and structural brain anomalies. ODC1 has been linked to additional diseases like cancer, with growing evidence for neurological contributions to schizophrenia, mood disorders, anxiety, epilepsy, learning, and suicidal behavior. The evidence of ODC1 connection to neural disorders highlights the need for a systematic analysis of ODC1 genotype-to-phenotype associations. An analysis of variants from ClinVar, Geno2MP, TOPMed, gnomAD, and COSMIC revealed an intellectual disability and seizure connected loss-of-function variant, ODC G84R (rs138359527, NC_000002.12:g.10444500C > T). The missense variant is found in ~1% of South Asian individuals and results in 2.5-fold decrease in enzyme function. Expression quantitative trait loci (eQTLs) reveal multiple functionally annotated, non-coding variants regulating ODC1 that associate with psychiatric/neurological phenotypes. Further dissection of RNA-Seq during fetal brain development and within cerebral organoids showed an association of ODC1 expression with cell proliferation of neural progenitor cells, suggesting gain-of-function variants with neural over-proliferation and loss-of-function variants with neural depletion. The linkage from the expression data of ODC1 in early neural progenitor proliferation to phenotypes of neurodevelopmental delay and to the connection of polyamine metabolites in brain function establish ODC1 as a bona fide neurodevelopmental disorder gene.


Assuntos
Encéfalo/patologia , Transportadores de Ácidos Dicarboxílicos/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Células-Tronco Neurais/patologia , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Polimorfismo de Nucleotídeo Único , Encéfalo/metabolismo , Proliferação de Células , Humanos , Células-Tronco Neurais/metabolismo , Transtornos do Neurodesenvolvimento/genética
6.
eNeuro ; 7(6)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33199411

RESUMO

Cortical interneuron (CIN) dysfunction is thought to play a major role in neuropsychiatric conditions like epilepsy, schizophrenia and autism. It is therefore essential to understand how the development, physiology, and functions of CINs influence cortical circuit activity and behavior in model organisms such as mice and primates. While transgenic driver lines are powerful tools for studying CINs in mice, this technology is limited in other species. An alternative approach is to use viral vectors such as AAV, which can be used in multiple species including primates and also have potential for therapeutic use in humans. Thus, we sought to discover gene regulatory enhancer elements (REs) that can be used in viral vectors to drive expression in specific cell types. The present study describes the systematic genome-wide identification of putative REs (pREs) that are preferentially active in immature CINs by histone modification chromatin immunoprecipitation and sequencing (ChIP-seq). We evaluated two novel pREs in AAV vectors, alongside the well-established Dlx I12b enhancer, and found that they drove CIN-specific reporter expression in adult mice. We also showed that the identified Arl4d pRE could drive sufficient expression of channelrhodopsin for optogenetic rescue of behavioral deficits in the Dlx5/6+/- mouse model of fast-spiking CIN dysfunction.


Assuntos
Transtorno Autístico , Interneurônios , Elementos Reguladores de Transcrição , Esquizofrenia , Animais , Animais Geneticamente Modificados , Dependovirus , Vetores Genéticos , Camundongos , Fatores de Transcrição
7.
Proc Natl Acad Sci U S A ; 117(45): 28384-28392, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33122441

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). The main proliferating component of KS tumors is a cell of endothelial origin termed the spindle cell. Spindle cells are predominantly latently infected with only a small percentage of cells undergoing viral replication. As there is no direct treatment for latent KSHV, identification of host vulnerabilities in latently infected endothelial cells could be exploited to inhibit KSHV-associated tumor cells. Using a pooled CRISPR-Cas9 lentivirus library, we identified host factors that are essential for the survival or proliferation of latently infected endothelial cells in culture, but not their uninfected counterparts. Among the many host genes identified, there was an enrichment in genes localizing to the mitochondria, including genes involved in mitochondrial translation. Antibiotics that inhibit bacterial and mitochondrial translation specifically inhibited the expansion of latently infected endothelial cells and led to increased cell death in patient-derived PEL cell lines. Direct inhibition of mitochondrial respiration or ablation of mitochondrial genomes leads to increased death in latently infected cells. KSHV latent infection decreases mitochondrial numbers, but there are increases in mitochondrial size, genome copy number, and transcript levels. We found that multiple gene products of the latent locus localize to the mitochondria. During latent infection, KSHV significantly alters mitochondrial biology, leading to enhanced sensitivity to inhibition of mitochondrial respiration, which provides a potential therapeutic avenue for KSHV-associated cancers.


Assuntos
Sistemas CRISPR-Cas , Infecções por Herpesviridae/genética , Herpesvirus Humano 8/genética , Mitocôndrias/metabolismo , Latência Viral/genética , Linhagem Celular , Proliferação de Células , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Células Endoteliais/metabolismo , Herpesvirus Humano 8/fisiologia , Humanos , Linfoma de Efusão Primária/genética , Sarcoma de Kaposi , Replicação Viral
8.
PLoS Pathog ; 16(6): e1008634, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32555637

RESUMO

Kaposi's Sarcoma Herpesvirus (KSHV) is present in the main tumor cells of Kaposi's Sarcoma (KS), the spindle cells, which are of endothelial origin. KSHV is also associated with two B-cell lymphomas, Primary Effusion Lymphoma (PEL) and Multicentric Castleman's Disease. In KS and PEL, KSHV is primarily latent in the infected cells, expressing only a few genes. Although KSHV infection is required for KS and PEL, it is unclear how latent gene expression contributes to their formation. Proliferation of cancer cells occurs despite multiple checkpoints intended to prevent dysregulated cell growth. The first of these checkpoints, caused by shortening of telomeres, results in replicative senescence, where cells are metabolically active, but no longer divide. We found that human dermal lymphatic endothelial cells (LECs) are more susceptible to KSHV infection than their blood-specific endothelial cell counterparts and maintain KSHV latency to higher levels during passage. Importantly, KSHV infection of human LECs but not human BECs promotes their continued proliferation beyond this first checkpoint of replicative senescence. The latently expressed viral cyclin homolog is essential for KSHV-induced bypass of senescence in LECs. These data suggest that LECs may be an important reservoir for KSHV infection and may play a role during KS tumor development and that the viral cyclin is a critical oncogene for this process.


Assuntos
Senescência Celular , Ciclinas/metabolismo , Células Endoteliais/metabolismo , Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 8/metabolismo , Proteínas Virais/metabolismo , Ciclinas/genética , Células Endoteliais/patologia , Células Endoteliais/virologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/patologia , Herpesvirus Humano 8/genética , Humanos , Proteínas Virais/genética
9.
Elife ; 92020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32452758

RESUMO

​Maf (c-Maf) and Mafb transcription factors (TFs) have compensatory roles in repressing somatostatin (SST+) interneuron (IN) production in medial ganglionic eminence (MGE) secondary progenitors in mice. Maf and Mafb conditional deletion (cDKO) decreases the survival of MGE-derived cortical interneurons (CINs) and changes their physiological properties. Herein, we show that (1) Mef2c and Snap25 are positively regulated by Maf and Mafb to drive IN morphological maturation; (2) Maf and Mafb promote Mef2c expression which specifies parvalbumin (PV+) INs; (3) Elmo1, Igfbp4 and Mef2c are candidate markers of immature PV+ hippocampal INs (HIN). Furthermore, Maf/Mafb neonatal cDKOs have decreased CINs and increased HINs, that express Pnoc, an HIN specific marker. Our findings not only elucidate key gene targets of Maf and Mafb that control IN development, but also identify for the first time TFs that differentially regulate CIN vs. HIN production.


Assuntos
Regulação da Expressão Gênica , Interneurônios/metabolismo , Fator de Transcrição MafB/fisiologia , Proteínas Proto-Oncogênicas c-maf/fisiologia , Animais , Feminino , Fatores de Transcrição MEF2/metabolismo , Camundongos , Doenças do Sistema Nervoso/etiologia , Gravidez , Precursores de Proteínas/genética , Receptores CXCR4/metabolismo , Receptores Opioides/genética , Análise de Célula Única , Proteína 25 Associada a Sinaptossoma/metabolismo , Transcriptoma
10.
Proc Natl Acad Sci U S A ; 117(11): 6189-6195, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123116

RESUMO

Neurofibromatosis 1 (NF1) is caused by mutations in the NF1 gene, which encodes the protein, neurofibromin, an inhibitor of Ras activity. Cortical GABAergic interneurons (CINs) are implicated in NF1 pathology, but the cellular and molecular changes to CINs are unknown. We deleted mouse Nf1 from the medial ganglionic eminence, which gives rise to both oligodendrocytes and CINs that express somatostatin and parvalbumin. Nf1 loss led to a persistence of immature oligodendrocytes that prevented later-generated oligodendrocytes from occupying the cortex. Moreover, molecular and cellular properties of parvalbumin (PV)-positive CINs were altered by the loss of Nf1, without changes in somatostatin (SST)-positive CINs. We discovered that loss of Nf1 results in a dose-dependent decrease in Lhx6 expression, the transcription factor necessary to establish SST+ and PV+ CINs, which was rescued by the MEK inhibitor SL327, revealing a mechanism whereby a neurofibromin/Ras/MEK pathway regulates a critical CIN developmental milestone.


Assuntos
Córtex Cerebral/patologia , Neurônios GABAérgicos/patologia , Interneurônios/patologia , Proteínas com Homeodomínio LIM/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurofibromatose 1/patologia , Neurofibromina 1/genética , Fatores de Transcrição/metabolismo , Aminoacetonitrila/administração & dosagem , Aminoacetonitrila/análogos & derivados , Animais , Células Cultivadas , Córtex Cerebral/citologia , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Neurônios GABAérgicos/metabolismo , Humanos , Interneurônios/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Eminência Mediana/citologia , Camundongos , Camundongos Knockout , Neurofibromatose 1/genética , Neurofibromina 1/metabolismo , Neuroglia/citologia , Parvalbuminas/metabolismo , Cultura Primária de Células , Somatostatina/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo
11.
Virology ; 540: 150-159, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31928996

RESUMO

During DNA virus infections, detection of cytosolic DNA by the cGAS-STING pathway leads to activation of IFN-ß. Kaposi's Sarcoma Herpesvirus (KSHV), an oncogenic DNA virus, is the etiological agent of Kaposi's Sarcoma, an endothelial cell (EC)-based tumor. To investigate the role of STING during KSHV infection of primary ECs we identified a primary lymphatic EC sample that is defective for STING activation and we also knocked out STING in blood ECs. Ablation of STING in EC does not increase susceptibility to KSHV latent infection nor does it increase KSHV spread after lytic reactivation indicating STING signaling does not restrict KSHV. In contrast, STING ablation increases Adenovirus spread at low MOI, but STING is dispensable for blocking replication. These experiments reveal that the importance of STING depends on the DNA virus and that STING appears more important for restricting spread to bystander cells than for inhibition of viral replication.


Assuntos
Células Endoteliais/virologia , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/fisiologia , Proteínas de Membrana/metabolismo , DNA Viral , Suscetibilidade a Doenças , Humanos , Imunidade Inata , Nucleotidiltransferases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Replicação Viral
12.
J Neurosci ; 40(11): 2215-2227, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-31988060

RESUMO

Manipulations that enhance GABAergic inhibition have been associated with improved behavioral phenotypes in autism models, suggesting that autism may be treated by correcting underlying deficits of inhibition. Interneuron transplantation is a method for increasing recipient synaptic inhibition, and it has been considered a prospective therapy for conditions marked by deficient inhibition, including neuropsychiatric disorders. It is unknown, however, whether interneuron transplantation may be therapeutically effective only for conditions marked by reduced inhibition, and it is also unclear whether transplantation improves behavioral phenotypes solely by normalizing underlying circuit defects. To address these questions, we studied the effects of interneuron transplantation in male and female mice lacking the autism-associated gene, Pten, in GABAergic interneurons. Pten mutant mice exhibit social behavior deficits, elevated synaptic inhibition in prefrontal cortex, abnormal baseline and social interaction-evoked electroencephalogram (EEG) signals, and an altered composition of cortical interneuron subtypes. Transplantation of wild-type embryonic interneurons from the medial ganglionic eminence into the prefrontal cortex of neonatal Pten mutants rescued social behavior despite exacerbating excessive levels of synaptic inhibition. Furthermore, transplantation did not normalize recipient EEG signals measured during baseline states. Interneuron transplantation can thus correct behavioral deficits even when those deficits are associated with elevated synaptic inhibition. Moreover, transplantation does not exert therapeutic effects solely by restoring wild-type circuit states. Our findings indicate that interneuron transplantation could offer a novel cell-based approach to autism treatment while challenging assumptions that effective therapies must reverse underlying circuit defects.SIGNIFICANCE STATEMENT Imbalances between neural excitation and inhibition are hypothesized to contribute to the pathophysiology of autism. Interneuron transplantation is a method for altering recipient inhibition, and it has been considered a prospective therapy for neuropsychiatric disorders, including autism. Here we examined the behavioral and physiological effects of interneuron transplantation in a mouse genetic model of autism. They demonstrate that transplantation rescues recipient social interaction deficits without correcting a common measure of recipient inhibition, or circuit-level physiological measures. These findings demonstrate that interneuron transplantation can exert therapeutic behavioral effects without necessarily restoring wild-type circuit states, while highlighting the potential of interneuron transplantation as an autism therapy.


Assuntos
Transtorno Autístico/cirurgia , Transplante de Tecido Encefálico , Transplante de Tecido Fetal , Neurônios GABAérgicos/fisiologia , Interneurônios/transplante , Inibição Neural/fisiologia , PTEN Fosfo-Hidrolase/deficiência , Comportamento Social , Animais , Transtorno Autístico/fisiopatologia , Transtorno Autístico/psicologia , Modelos Animais de Doenças , Eletroencefalografia , Comportamento Exploratório , Feminino , Masculino , Aprendizagem em Labirinto , Eminência Mediana/citologia , Eminência Mediana/embriologia , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/fisiologia , Técnicas de Patch-Clamp , Fenótipo , Córtex Pré-Frontal/fisiopatologia , Distribuição Aleatória , Sinapses/fisiologia
13.
Mol Autism ; 10: 17, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31007884

RESUMO

Background: Epidemiological and clinical evidence points to cancer as a comorbidity in people with autism spectrum disorders (ASD). A significant overlap of genes and biological processes between both diseases has also been reported. Methods: Here, for the first time, we compared the gene expression profiles of ASD frontal cortex tissues and 22 cancer types obtained by differential expression meta-analysis and report gene, pathway, and drug set-based overlaps between them. Results: Four cancer types (brain, thyroid, kidney, and pancreatic cancers) presented a significant overlap in gene expression deregulations in the same direction as ASD whereas two cancer types (lung and prostate cancers) showed differential expression profiles significantly deregulated in the opposite direction from ASD. Functional enrichment and LINCS L1000 based drug set enrichment analyses revealed the implication of several biological processes and pathways that were affected jointly in both diseases, including impairments of the immune system, and impairments in oxidative phosphorylation and ATP synthesis among others. Our data also suggest that brain and kidney cancer have patterns of transcriptomic dysregulation in the PI3K/AKT/MTOR axis that are similar to those found in ASD. Conclusions: Comparisons of ASD and cancer differential gene expression meta-analysis results suggest that brain, kidney, thyroid, and pancreatic cancers are candidates for direct comorbid associations with ASD. On the other hand, lung and prostate cancers are candidates for inverse comorbid associations with ASD. Joint perturbations in a set of specific biological processes underlie these associations which include several pathways previously implicated in both cancer and ASD encompassing immune system alterations, impairments of energy metabolism, cell cycle, and signaling through PI3K and G protein-coupled receptors among others. These findings could help to explain epidemiological observations pointing towards direct and inverse comorbid associations between ASD and specific cancer types and depict a complex scenario regarding the molecular patterns of association between ASD and cancer.


Assuntos
Transtorno Autístico/genética , Encéfalo/metabolismo , Neoplasias/genética , Transcriptoma , Transtorno Autístico/epidemiologia , Humanos , Neoplasias/epidemiologia , Transdução de Sinais/genética
14.
Cell Rep ; 26(5): 1157-1173.e5, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30699346

RESUMO

Mafb and c-Maf transcription factor (TF) expression is enriched in medial ganglionic eminence (MGE) lineages, beginning in late-secondary progenitors and continuing into mature parvalbumin (PV+) and somatostatin (SST+) interneurons. However, the functions of Maf TFs in MGE development remain to be elucidated. Herein, Mafb and c-Maf were conditionally deleted, alone and together, in the MGE and its lineages. Analyses of Maf mutant mice revealed redundant functions of Mafb and c-Maf in secondary MGE progenitors, where they repress the generation of SST+ cortical and hippocampal interneurons. By contrast, Mafb and c-Maf have distinct roles in postnatal cortical interneuron (CIN) morphological maturation, synaptogenesis, and cortical circuit integration. Thus, Mafb and c-Maf have redundant and opposing functions at different steps in CIN development.


Assuntos
Linhagem da Célula , Córtex Cerebral/metabolismo , Interneurônios/metabolismo , Fator de Transcrição MafB/metabolismo , Proteínas Proto-Oncogênicas c-maf/metabolismo , Potenciais de Ação , Animais , Animais Recém-Nascidos , Apoptose , Membrana Celular/metabolismo , Movimento Celular , Proliferação de Células , Hipocampo/metabolismo , Eminência Mediana/metabolismo , Camundongos Knockout , Neuritos/metabolismo , Neurogênese , Parvalbuminas/metabolismo , Somatostatina/metabolismo , Sinapses/metabolismo
15.
J Neurosci ; 39(1): 177-192, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30377227

RESUMO

The CCCTC-binding factor (CTCF) is a central regulator of chromatin topology recently linked to neurodevelopmental disorders such as intellectual disability, autism, and schizophrenia. The aim of this study was to identify novel roles of CTCF in the developing mouse brain. We provide evidence that CTCF is required for the expression of the LIM homeodomain factor LHX6 involved in fate determination of cortical interneurons (CINs) that originate in the medial ganglionic eminence (MGE). Conditional Ctcf ablation in the MGE of mice of either sex leads to delayed tangential migration, abnormal distribution of CIN in the neocortex, a marked reduction of CINs expressing parvalbumin and somatostatin (Sst), and an increased number of MGE-derived cells expressing Lhx8 and other markers of basal forebrain projection neurons. Likewise, Ctcf-null MGE cells transplanted into the cortex of wild-type hosts generate fewer Sst-expressing CINs and exhibit lamination defects that are efficiently rescued upon reexpression of LHX6. Collectively, these data indicate that CTCF regulates the dichotomy between Lhx6 and Lhx8 to achieve correct specification and migration of MGE-derived CINs.SIGNIFICANCE STATEMENT This work provides evidence that CCCTC-binding factor (CTCF) controls an early fate decision point in the generation of cortical interneurons mediated at least in part by Lhx6. Importantly, the abnormalities described could reflect early molecular and cellular events that contribute to human neurological disorders previously linked to CTCF, including schizophrenia, autism, and intellectual disability.


Assuntos
Fator de Ligação a CCCTC/fisiologia , Córtex Cerebral/fisiologia , Interneurônios/fisiologia , Eminência Mediana/fisiologia , Animais , Fator de Ligação a CCCTC/genética , Contagem de Células , Movimento Celular/genética , Movimento Celular/fisiologia , Córtex Cerebral/citologia , Feminino , Proteínas com Homeodomínio LIM/biossíntese , Proteínas com Homeodomínio LIM/genética , Masculino , Eminência Mediana/citologia , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/citologia , Neocórtex/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Parvalbuminas/metabolismo , Somatostatina/metabolismo , Telencéfalo/citologia , Telencéfalo/crescimento & desenvolvimento , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Ácido gama-Aminobutírico/fisiologia
16.
Cereb Cortex ; 28(11): 3797-3815, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29028947

RESUMO

The postnatal functions of the Dlx1&2 transcription factors in cortical interneurons (CINs) are unknown. Here, using conditional Dlx1, Dlx2, and Dlx1&2 knockouts (CKOs), we defined their roles in specific CINs. The CKOs had dendritic, synaptic, and survival defects, affecting even PV+ CINs. We provide evidence that DLX2 directly drives Gad1, Gad2, and Vgat expression, and show that mutants had reduced mIPSC amplitude. In addition, the mutants formed fewer GABAergic synapses on excitatory neurons and had reduced mIPSC frequency. Furthermore, Dlx1/2 CKO had hypoplastic dendrites, fewer excitatory synapses, and reduced excitatory input. We provide evidence that some of these phenotypes were due to reduced expression of GRIN2B (a subunit of the NMDA receptor), a high confidence Autism gene. Thus, Dlx1&2 coordinate key components of CIN postnatal development by promoting their excitability, inhibitory output, and survival.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Neurônios GABAérgicos/fisiologia , Proteínas de Homeodomínio/fisiologia , Interneurônios/fisiologia , Sinapses/fisiologia , Fatores de Transcrição/fisiologia , Ácido gama-Aminobutírico/biossíntese , Animais , Córtex Cerebral/citologia , Feminino , Neurônios GABAérgicos/citologia , Regulação da Expressão Gênica no Desenvolvimento , Glutamato Descarboxilase/metabolismo , Proteínas de Homeodomínio/genética , Interneurônios/citologia , Masculino , Camundongos Knockout , Potenciais Pós-Sinápticos em Miniatura , Fatores de Transcrição/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
17.
Cereb Cortex ; 28(11): 3868-3879, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29028946

RESUMO

Human mutations in CNTNAP2 are associated with an array of neuropsychiatric and neurological syndromes, including speech and language disorders, epilepsy, and autism spectrum disorder (ASD). We examined Cntnap2's expression and function in GABAergic cortical interneurons (CINs), where its RNA is present at highest levels in chandelier neurons, PV+ neurons and VIP+ neurons. In vivo functions were studied using both constitutive Cntnap2 null mice and a transplantation assay, the latter to assess cell autonomous phenotypes of medial ganglionic eminence (MGE)-derived CINs. We found that Cntnap2 constitutive null mutants had normal numbers of MGE-derived CINs, but had reduced PV+ CINs. Transplantation assays showed that Cntnap2 cell autonomously regulated the physiology of parvalbumin (PV)+, fast-spiking CINs; no phenotypes were observed in somatostatin+, regular spiking, CINs. We also tested the effects of 4 human CNTNAP2 ASD missense mutations in vivo, and found that they impaired PV+ CIN development. Together, these data reveal that reduced CNTNAP2 function impairs PV+ CINs, a cell type with important roles in regulating cortical circuits.


Assuntos
Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Alelos , Animais , Transtorno do Espectro Autista , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Parvalbuminas/metabolismo , Proteína Reelina , Serina Endopeptidases/metabolismo , Córtex Somatossensorial/fisiologia , Telencéfalo/crescimento & desenvolvimento
18.
Development ; 144(15): 2837-2851, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28694260

RESUMO

Distinct cortical interneuron (CIN) subtypes have unique circuit functions; dysfunction in specific subtypes is implicated in neuropsychiatric disorders. Somatostatin- and parvalbumin-expressing (SST+ and PV+) interneurons are the two major subtypes generated by medial ganglionic eminence (MGE) progenitors. Spatial and temporal mechanisms governing their cell-fate specification and differential integration into cortical layers are largely unknown. We provide evidence that Coup-TF1 and Coup-TF2 (Nr2f1 and Nr2f2) transcription factor expression in an arc-shaped progenitor domain within the MGE promotes time-dependent survival of this neuroepithelium and the time-dependent specification of layer V SST+ CINs. Coup-TF1 and Coup-TF2 autonomously repress PV+ fate in MGE progenitors, in part through directly driving Sox6 expression. These results have identified, in mouse, a transcriptional pathway that controls SST-PV fate.


Assuntos
Fator II de Transcrição COUP/metabolismo , Fator I de Transcrição COUP/metabolismo , Interneurônios/metabolismo , Neocórtex/citologia , Animais , Fator I de Transcrição COUP/genética , Fator II de Transcrição COUP/genética , Células Cultivadas , Imunoprecipitação da Cromatina , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Parvalbuminas/genética , Parvalbuminas/metabolismo , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXD/metabolismo , Somatostatina/genética , Somatostatina/metabolismo
19.
Neuron ; 93(2): 291-298, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28041880

RESUMO

GABAergic interneurons play critical roles in seizures, but it remains unknown whether these vary across interneuron subtypes or evolve during a seizure. This uncertainty stems from the unpredictable timing of seizures in most models, which limits neuronal imaging or manipulations around the seizure onset. Here, we describe a mouse model for optogenetic seizure induction. Combining this with calcium imaging, we find that seizure onset rapidly recruits parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal peptitde (VIP)-expressing interneurons, whereas excitatory neurons are recruited several seconds later. Optogenetically inhibiting VIP interneurons consistently increased seizure threshold and reduced seizure duration. Inhibiting PV+ and SOM+ interneurons had mixed effects on seizure initiation but consistently reduced seizure duration. Thus, while their roles may evolve during seizures, PV+ and SOM+ interneurons ultimately help maintain ongoing seizures. These results show how an optogenetically induced seizure model can be leveraged to pinpoint a new target for seizure control: VIP interneurons. VIDEO ABSTRACT.


Assuntos
Modelos Animais de Doenças , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Camundongos , Córtex Motor/fisiopatologia , Inibição Neural , Optogenética/métodos , Convulsões/fisiopatologia , Animais , Channelrhodopsins , Eletroencefalografia , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Córtex Motor/metabolismo , Parvalbuminas/metabolismo , Convulsões/metabolismo , Somatostatina/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
20.
J Vis Exp ; (98)2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25938985

RESUMO

GABAergic cortical interneurons, derived from the embryonic medial and caudal ganglionic eminences (MGE and CGE), are functionally and morphologically diverse. Inroads have been made in understanding the roles of distinct cortical interneuron subgroups, however, there are still many mechanisms to be worked out that may contribute to the development and maturation of different types of GABAergic cells. Moreover, altered GABAergic signaling may contribute to phenotypes of autism, schizophrenia and epilepsy. Specific Cre-driver lines have begun to parcel out the functions of unique interneuron subgroups. Despite the advances in mouse models, it is often difficult to efficiently study GABAergic cortical interneuron progenitors with molecular approaches in vivo. One important technique used to study the cell autonomous programming of these cells is transplantation of MGE cells into host cortices. These transplanted cells migrate extensively, differentiate, and functionally integrate. In addition, MGE cells can be efficiently transduced with lentivirus immediately prior to transplantation, allowing for a multitude of molecular approaches. Here we detail a protocol to efficiently transduce MGE cells before transplantation for in vivo analysis, using available Cre-driver lines and Cre-dependent expression vectors. This approach is advantageous because it combines precise genetic manipulation with the ability of these cells to disperse after transplantation, permitting greater cell-type specific resolution in vivo.


Assuntos
Transplante de Células/métodos , Neurônios GABAérgicos/transplante , Interneurônios/fisiologia , Interneurônios/virologia , Eminência Mediana/fisiologia , Eminência Mediana/virologia , Animais , Feminino , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/fisiologia , Neurônios GABAérgicos/virologia , Células HEK293 , Humanos , Interneurônios/citologia , Interneurônios/transplante , Lentivirus/genética , Eminência Mediana/citologia , Eminência Mediana/transplante , Camundongos , Células-Tronco Neurais/citologia , Gravidez , Transdução de Sinais , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA