Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurosci Lett ; 603: 42-7, 2015 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-26182881

RESUMO

Activation of N-methyl-d-aspartate (NMDA) receptors is critical for hypersensitivity in chronic neuropathic pain. Since astroglia can regulate NMDA receptor activation by releasing the NMDA receptor co-agonist d-serine, we investigated the role of NMDA receptor and d-serine in neuropathic chronic pain. Male Wistar rats underwent right L5-L6 spinal nerve ligation or sham surgery and were tested for mechanical allodynia and hyperalgesia after 14 days. Acute intrathecal administration of the NMDA receptor antagonist d-AP5 as well as chronic administration of the glia metabolism inhibitor fluoroacetate significantly reduced mechanical allodynia in neuropathic rats. The effect of fluoroacetate was reversed by acutely administered intrathecal d-serine. Degrading d-serine using acute intrathecal administration of d-aminoacid oxidase also reduced pain symptoms. Immunocytochemistry showed that about 70% of serine racemase, the synthesizing enzyme of d-serine, was expressed in astrocyte processes in the superficial laminae of L5 dorsal horn. Serine racemase expression was upregulated in astrocyte processes in neuropathic rats compared to sham rats. These results show that neuropathic pain depends upon glial d-serine that co-activates spinal NMDA receptors.


Assuntos
Neuralgia/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo , Medula Espinal/metabolismo , Animais , Proteína Glial Fibrilar Ácida/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Neuralgia/fisiopatologia , Estimulação Física , Racemases e Epimerases/metabolismo , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Tato
2.
J Physiol ; 592(7): 1637-54, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24492838

RESUMO

Vasopressin secretion from the magnocellular neurosecretory cells (MNCs) is crucial for body fluid homeostasis. Osmotic regulation of MNC activity involves the concerted modulation of intrinsic mechanosensitive ion channels, taurine release from local astrocytes as well as excitatory inputs derived from osmosensitive forebrain regions. Extracellular signal-regulated protein kinases (ERK) are mitogen-activated protein kinases that transduce extracellular stimuli into intracellular post-translational and transcriptional responses, leading to changes in intrinsic neuronal properties and synaptic function. Here, we investigated whether ERK activation (i.e. phosphorylation) plays a role in the functioning of forebrain osmoregulatory networks. We found that within 10 min after intraperitoneal injections of hypertonic saline (3 m, 6 m) in rats, many phosphoERK-immunopositive neurones were observed in osmosensitive forebrain regions, including the MNC containing supraoptic nuclei. The intensity of ERK labelling was dose-dependent. Reciprocally, slow intragastric infusions of water that lower osmolality reduced basal ERK phosphorylation. In the supraoptic nucleus, ERK phosphorylation predominated in vasopressin neurones vs. oxytocin neurones and was absent from astrocytes. Western blot experiments confirmed that phosphoERK expression in the supraoptic nucleus was dose dependent. Intracerebroventricular administration of the ERK phosphorylation inhibitor U 0126 before a hyperosmotic challenge reduced the number of both phosphoERK-immunopositive neurones and Fos expressing neurones in osmosensitive forebrain regions. Blockade of ERK phosphorylation also reduced hypertonically induced depolarization and an increase in firing of the supraoptic MNCs recorded in vitro. It finally reduced hypertonically induced vasopressin release in the bloodstream. Altogether, these findings identify ERK phosphorylation as a new element contributing to the osmoregulatory mechanisms of vasopressin release.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Neurônios/enzimologia , Osmorregulação , Prosencéfalo/enzimologia , Animais , Ingestão de Líquidos , Ativação Enzimática , Potenciais Evocados , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Feminino , Injeções Intraperitoneais , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Concentração Osmolar , Osmorregulação/efeitos dos fármacos , Fosforilação , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Wistar , Solução Salina Hipertônica/administração & dosagem , Núcleo Supraóptico/enzimologia , Núcleo Supraóptico/metabolismo , Fatores de Tempo , Vasopressinas/metabolismo
3.
Pain ; 155(2): 275-291, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24120461

RESUMO

Bone cancer pain is a common and disruptive symptom in cancer patients. In cancer pain animal models, massive reactive astrogliosis in the dorsal horn of the spinal cord has been reported. Because astrocytes may behave as driving partners for pathological pain, we investigated the temporal development of pain behavior and reactive astrogliosis in a rat bone cancer pain model induced by injecting MRMT-1 rat mammary gland carcinoma cells into the tibia. Along with the development of bone lesions, a gradual mechanical and thermal allodynia and hyperalgesia as well as a reduced use of the affected limb developed in bone cancer-bearing animals, but not in sham-treated animals. Dorsal horn Fos expression after nonpainful palpation of the injected limb was also increased in bone cancer-bearing animals. However, at any time during the evolution of tumor, there was no increase in glial fibrillary acidic protein (GFAP) immunoreactivity in the dorsal horn. Further analysis at 21days after injection of the tumor showed no increase in GFAP and interleukin (IL) 1ß transcripts, number of superficial dorsal horn S100ß protein immunoreactive astrocytes, or immunoreactivity for microglial markers (OX-42 and Iba-1). In contrast, all these parameters were increased in the dorsal horn of rats 2weeks after sciatic nerve ligation. This suggests that in some cases, bone cancer pain may not be correlated with spinal overexpression of reactive glia markers, whereas neuropathic pain is. Glia may thus play different roles in the development and maintenance of chronic pain in these 2 situations.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/metabolismo , Neuroglia/metabolismo , Medição da Dor/métodos , Dor/metabolismo , Medula Espinal/metabolismo , Animais , Neoplasias Ósseas/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Masculino , Neuroglia/patologia , Dor/patologia , Ratos , Ratos Sprague-Dawley , Medula Espinal/patologia , Células Tumorais Cultivadas
4.
Pain ; 152(6): 1340-1348, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21392888

RESUMO

Glycine inhibitory dysfunction provides a useful experimental model for studying the mechanism of dynamic mechanical allodynia, a widespread and intractable symptom of neuropathic pain. In this model, allodynia expression relies on N-methyl-d-aspartate receptors (NMDARs), and it has been shown that astrocytes can regulate their activation through the release of the NMDAR coagonist d-serine. Recent studies also suggest that astrocytes potentially contribute to neuropathic pain. However, the involvement of astrocytes in dynamic mechanical allodynia remains unknown. Here, we show that after blockade of glycine inhibition, orofacial tactile stimuli activated medullary dorsal horn (MDH) astrocytes, but not microglia. Accordingly, the glia inhibitor fluorocitrate, but not the microglia inhibitor minocycline, prevented allodynia. Fluorocitrate also impeded activation of astrocytes and blocked activation of the superficial MDH neural circuit underlying allodynia, as revealed by study of Fos expression. MDH astrocytes are thus required for allodynia. They may also produce d-serine because astrocytic processes were selectively immunolabeled for serine racemase, the d-serine synthesizing enzyme. Accordingly, selective degradation of d-serine with d-amino acid oxidase applied in vivo prevented allodynia and activation of the underlying neural circuit. Conversely, allodynia blockade by fluorocitrate was reversed by exogenous d-serine. These results suggest the following scenario: removal of glycine inhibition makes tactile stimuli able to activate astrocytes; activated astrocytes may provide d-serine to enable NMDAR activation and thus allodynia. Such a contribution of astrocytes to pathological pain fuels the emerging concept that astrocytes are critical players in pain signaling. Glycine disinhibition makes tactile stimuli able to activate astrocytes, which may provide d-serine to enable NMDA receptor activation and thus allodynia.


Assuntos
Citratos/uso terapêutico , Glicina/metabolismo , Hiperalgesia/tratamento farmacológico , Serina/metabolismo , Análise de Variância , Animais , Astrócitos/química , Astrócitos/efeitos dos fármacos , Antígeno CD11b/metabolismo , Citratos/farmacologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Proteínas Oncogênicas v-fos/metabolismo , Medição da Dor , Ratos , Ratos Sprague-Dawley , Raízes Nervosas Espinhais/citologia , Estricnina/uso terapêutico , Fatores de Tempo
5.
J Neurosci ; 29(8): 2519-27, 2009 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-19244526

RESUMO

Dynamic mechanical allodynia is a widespread and intractable symptom of neuropathic pain for which there is a lack of effective therapy. We recently provided a novel perspective on the mechanisms of this symptom by showing that a simple switch in trigeminal glycine synaptic inhibition can turn touch into pain by unmasking innocuous input to superficial dorsal horn nociceptive specific neurons through a local excitatory, NMDA-dependent neural circuit involving neurons expressing the gamma isoform of protein kinase C. Here, we further investigated the clinical relevance and processing of glycine disinhibition. First, we showed that glycine disinhibition with strychnine selectively induced dynamic but not static mechanical allodynia. The induced allodynia was resistant to morphine. Second, morphine did not prevent the activation of the neural circuit underlying allodynia as shown by study of Fos expression and extracellular-signal regulated kinase phosphorylation in dorsal horn neurons. Third, in contrast to intradermal capsaicin injections, light, dynamic mechanical stimuli applied under disinhibition did not produce neurokinin 1 (NK1) receptor internalization in dorsal horn neurons. Finally, light, dynamic mechanical stimuli applied under disinhibition induced Fos expression only in neurons that did not express NK1 receptor. To summarize, the selectivity and morphine resistance of the glycine-disinhibition paradigm adequately reflect the clinical characteristics of dynamic mechanical allodynia. The present findings thus reveal the involvement of a selective dorsal horn circuit in dynamic mechanical allodynia, which operates through superficial lamina nociceptive-specific neurons that do not bear NK1 receptor and provide an explanation for the differences in the pharmacological sensitivity of neuropathic pain symptoms.


Assuntos
Analgésicos Opioides/administração & dosagem , Glicina/metabolismo , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Morfina/administração & dosagem , Limiar da Dor/fisiologia , Receptores da Neurocinina-1/fisiologia , Animais , Bicuculina/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Capsaicina/farmacologia , Modelos Animais de Doenças , Resistência a Medicamentos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Antagonistas GABAérgicos/farmacologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Masculino , Dinâmica não Linear , Proteínas Oncogênicas v-fos/metabolismo , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Estimulação Física/métodos , Células do Corno Posterior/metabolismo , Ratos , Ratos Sprague-Dawley , Estricnina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA