Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35743210

RESUMO

CBS encodes a pyridoxal 5'-phosphate-dependent enzyme that catalyses the condensation of homocysteine and serine to form cystathionine. Due to its implication in some cancers and in the cognitive pathophysiology of Down syndrome, the identification of pharmacological inhibitors of this enzyme is urgently required. However, thus far, attempts to identify such molecules have only led to the identification of compounds with low potency and limited selectivity. We consequently developed an original, yeast-based screening method that identified three FDA-approved drugs of the 8-hydroxyquinoline family: clioquinol, chloroxine and nitroxoline. These molecules reduce CBS enzymatic activity in different cellular models, proving that the molecular mechanisms involved in yeast phenotypic rescue are conserved in mammalian cells. A combination of genetic and chemical biology approaches also revealed the importance of copper and zinc intracellular levels in the regulation of CBS enzymatic activity-copper promoting CBS activity and zinc inhibiting its activity. Taken together, these results indicate that our effective screening approach identified three new potent CBS inhibitors and provides new findings for the regulation of CBS activity, which is crucial to develop new therapies for CBS-related human disorders.


Assuntos
Cistationina beta-Sintase , Saccharomyces cerevisiae , Animais , Cobre , Cistationina beta-Sintase/genética , Humanos , Mamíferos , Oxiquinolina/farmacologia , Fosfato de Piridoxal , Zinco
2.
Front Neurosci ; 16: 1110163, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36711154

RESUMO

Down syndrome (DS), the most frequent chromosomic aberration, results from the presence of an extra copy of chromosome 21. The identification of genes which overexpression contributes to intellectual disability (ID) in DS is important to understand the pathophysiological mechanisms involved and develop new pharmacological therapies. In particular, gene dosage of Dual specificity tyrosine phosphorylation Regulated Kinase 1A (DYRK1A) and of Cystathionine beta synthase (CBS) are crucial for cognitive function. As these two enzymes have lately been the main targets for therapeutic research on ID, we sought to decipher the genetic relationship between them. We also used a combination of genetic and drug screenings using a cellular model overexpressing CYS4, the homolog of CBS in Saccharomyces cerevisiae, to get further insights into the molecular mechanisms involved in the regulation of CBS activity. We showed that overexpression of YAK1, the homolog of DYRK1A in yeast, increased CYS4 activity whereas GSK3ß was identified as a genetic suppressor of CBS. In addition, analysis of the signaling pathways targeted by the drugs identified through the yeast-based pharmacological screening, and confirmed using human HepG2 cells, emphasized the importance of Akt/GSK3ß and NF-κB pathways into the regulation of CBS activity and expression. Taken together, these data provide further understanding into the regulation of CBS and in particular into the genetic relationship between DYRK1A and CBS through the Akt/GSK3ß and NF-κB pathways, which should help develop more effective therapies to reduce cognitive deficits in people with DS.

3.
Cancers (Basel) ; 13(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450819

RESUMO

Identified in the late 1970s as an oncogene, a driving force leading to tumor development, p53 turned out to be a key tumor suppressor gene. Now p53 is considered a master gene regulating the transcription of over 3000 target genes and controlling a remarkable number of cellular functions. The elevated prevalence of p53 mutations in human cancers has led to a recurring questioning about the roles of mutant p53 proteins and their functional consequences. Both mutants and isoforms of p53 have been attributed dominant-negative and gain of function properties among which is the ability to form amyloid aggregates and behave in a prion-like manner. This report challenges the ongoing "prion p53" hypothesis by reviewing evidence of p53 behavior in light of our current knowledge regarding amyloid proteins, prionoids and prions.

4.
Eur J Med Chem ; 178: 13-29, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31173968

RESUMO

The oncogenic Epstein-Barr virus (EBV) evades the immune system through limiting the expression of its highly antigenic and essential genome maintenance protein, EBNA1, to the minimal level to ensure viral genome replication, thereby also minimizing the production of EBNA1-derived antigenic peptides. This regulation is based on inhibition of translation of the virally-encoded EBNA1 mRNA, and involves the interaction of host protein nucleolin (NCL) with G-quadruplex (G4) structures that form in the glycine-alanine repeat (GAr)-encoding sequence of the EBNA1 mRNA. Ligands that bind to these G4-RNA can prevent their interaction with NCL, leading to disinhibition of EBNA1 expression and antigen presentation, thereby interfering with the immune evasion of EBNA1 and therefore of EBV (M.J. Lista et al., Nature Commun., 2017, 8, 16043). In this work, we synthesized and studied a series of 20 cationic bis(acylhydrazone) derivatives designed as G4 ligands. The in vitro evaluation showed that most derivatives based on central pyridine (Py), naphthyridine (Naph) or phenanthroline (Phen) units were efficient G4 binders, in contrast to their pyrimidine (Pym) counterparts, which were poor G4 binders due to a significantly different molecular geometry. The influence of lateral heterocyclic units (N-substituted pyridinium or quinolinium residues) on G4-binding properties was also investigated. Two novel compounds, namely PyDH2 and PhenDH2, used at a 5 µM concentration, were able to significantly enhance EBNA1 expression in H1299 cells in a GAr-dependent manner, while being significantly less toxic than the prototype drug PhenDC3 (GI50 > 50 µM). Antigen presentation, RNA pull-down and proximity ligation assays confirmed that the effect of both drugs was related to the disruption of NCL-EBNA1 mRNA interaction and the subsequent promotion of GAr-restricted antigen presentation. Our work provides a novel modular scaffold for the development of G-quadruplex-targeting drugs acting through interference with G4-protein interaction.


Assuntos
Hidrazonas/farmacologia , Evasão da Resposta Imune/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Fosfoproteínas/metabolismo , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular Tumoral , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Quadruplex G , Herpesvirus Humano 4/genética , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Fatores Imunológicos/síntese química , Fatores Imunológicos/química , Ligantes , Camundongos , RNA Mensageiro/genética , Nucleolina
5.
Microb Cell ; 4(9): 305-307, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28913345

RESUMO

The oncogenic Epstein-Barr virus (EBV) evades the immune system but has an Achilles heel: its genome maintenance protein EBNA1. Indeed, EBNA1 is essential for viral genome replication and maintenance but also highly antigenic. Hence, EBV evolved a system in which the glycine-alanine repeat (GAr) of EBNA1 limits the translation of its own mRNA at a minimal level to ensure its essential function thereby, at the same time, minimizing immune recognition. Defining intervention points where to interfere with EBNA1 immune evasion is an important step to trigger an immune response against EBV-carrying cancers. Thanks to a yeast-based assay that recapitulates all the aspects of EBNA1 self-limitation of expression, a recent study by Lista et al. [Nature Communications (2017) 7, 435-444] has uncovered the role of the host cell nucleolin (NCL) in this process via a direct interaction of this protein with G-quadruplexes (G4) formed in GAr-encoding sequence of EBNA1 mRNA. In addition, the G4 ligand PhenDC3 prevents NCL binding on EBNA1 mRNA and reverses GAr-mediated repression of translation and antigen presentation. This shows that the NCL-EBNA1 mRNA interaction is a relevant therapeutic target to unveil EBV-carrying cancers to the immune system and that the yeast model can be successfully used for uncovering drugs and host factors that interfere with EBV stealthiness.

6.
Oncotarget ; 8(34): 57855-57869, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28915717

RESUMO

Since its discovery in 1979, p53 has been on the forefront of cancer research. It is considered a master gene of cancer suppression and is found mutated in around 50% of all human tumors. In addition, the progressive identification of p53-related transcription factors p63 and p73 as well as their multiple isoforms have added further layers of complexity to an already dense network. Among the numerous models used to unravel the p53 family mysteries, S. cerevisiae has been particularly useful. This seemingly naive model allows the expression of a functional human p53 and thus the assessment of p53 intrinsic transcriptional activity. The aim of this article is to review the various contributions that the budding yeast has made to the understanding of p53, p63 and p73 biology and to envision new possible directions for yeast-based assays in the field of cancer as well as other p53-family-related diseases.

7.
Nat Commun ; 8: 16043, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28685753

RESUMO

The oncogenic Epstein-Barr virus (EBV) evades the immune system but has an Achilles heel: its genome maintenance protein EBNA1, which is essential for viral genome maintenance but highly antigenic. EBV has seemingly evolved a system in which the mRNA sequence encoding the glycine-alanine repeats (GAr) of the EBNA1 protein limits its expression to the minimal level necessary for function while minimizing immune recognition. Here, we identify nucleolin (NCL) as a host factor required for this process via a direct interaction with G-quadruplexes formed in GAr-encoding mRNA sequence. Overexpression of NCL enhances GAr-based inhibition of EBNA1 protein expression, whereas its downregulation relieves the suppression of both expression and antigen presentation. Moreover, the G-quadruplex ligand PhenDC3 prevents NCL binding to EBNA1 mRNA and reverses GAr-mediated repression of EBNA1 expression and antigen presentation. Hence the NCL-EBNA1 mRNA interaction is a relevant therapeutic target to trigger an immune response against EBV-carrying cancers.


Assuntos
Linfócitos B/imunologia , Antígenos Nucleares do Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune/genética , Fosfoproteínas/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Aminoquinolinas/farmacologia , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/virologia , Linhagem Celular Tumoral , Antígenos Nucleares do Vírus Epstein-Barr/imunologia , Quadruplex G , Células HCT116 , Herpesvirus Humano 4/efeitos dos fármacos , Herpesvirus Humano 4/imunologia , Humanos , Leontopithecus , Ligantes , Fosfoproteínas/imunologia , Ácidos Picolínicos/farmacologia , Quinolinas/farmacologia , RNA Mensageiro/imunologia , Proteínas de Ligação a RNA/imunologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Nucleolina
8.
Oncotarget ; 7(43): 69549-69564, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27589690

RESUMO

The tumor suppression activity of p53 is frequently impaired in cancers even when a wild-type copy of the gene is still present, suggesting that a dominant-negative effect is exerted by some of p53 mutants and isoforms. p63 and p73, which are related to p53, have also been reported to be subjected to a similar loss of function, suggesting that a dominant-negative interplay might happen between p53, p63 and p73. However, to which extent p53 hotspot mutants and isoforms of p53, p63 and p73 are able to interfere with the tumor suppressive activity of their siblings as well as the underlying mechanisms remain undeciphered. Using yeast, we showed that a dominant-negative effect is widely spread within the p53/p63/p73 family as all p53 loss-of-function hotspot mutants and several of the isoforms of p53 and p73 tested exhibit a dominant-negative potential. In addition, we found that this dominant-negative effect over p53 wild-type is based on tetramer poisoning through the formation of inactive hetero-tetramers and does not rely on a prion-like mechanism contrary to what has been previously suggested. We also showed that mutant p53-R175H gains the ability to inhibit p63 and p73 activity by a mechanism that is only partially based on tetramerization.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição/genética , Proteína Tumoral p73/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Humanos , Mutação , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Proteína Tumoral p73/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo
9.
Biotechnol J ; 10(11): 1670-81, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26311489

RESUMO

The Epstein-Barr gammaherpesvirus (EBV) is the first oncogenic virus discovered in human. Indeed, EBV has been known for more than 50 years to be tightly associated with certain human cancers. As such, EBV has been the subject of extensive studies aiming at deciphering various aspects of its biological cycle, ranging from the regulation of its genome replication and maintenance to the induction of its lytic cycle, including the mechanisms that allow its immune evasion or that are related to its tumorogenicity. For more than 30 years the budding yeast Saccharomyces cerevisiae has fruitfully contributed to a number of these studies. The aim of this article is to review the various aspects of EBV biology for which yeast has been instrumental, and to propose new possible applications for these yeast-based assays, as well as the creation of further yeast models dedicated to EBV. This review article illustrates the tremendous potential of S. cerevisiae in integrated chemobiological approaches for the biomedical research.


Assuntos
Pesquisa Biomédica/métodos , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Interações Hospedeiro-Patógeno , Modelos Imunológicos , Saccharomyces cerevisiae , Bioensaio , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Genoma Viral , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/patogenicidade , Humanos , Saccharomyces cerevisiae/imunologia , Saccharomyces cerevisiae/virologia
10.
J Pathol ; 235(2): 334-41, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25186125

RESUMO

The EBV-encoded EBNA1 was first discovered 40 years ago, approximately 10 years after the presence of EBV had been demonstrated in Burkitt's lymphoma cells. It took another 10 years before the functions of EBNA1 in maintaining the viral genome were revealed, and it has since been shown to be an essential viral factor expressed in all EBV-carrying cells. Apart from serving to maintain the viral episome and to control viral replication and gene expression, EBNA1 also harbours a cis-acting mechanism that allows virus-carrying host cells to evade the immune system. This relates to a particular glycine-alanine repeat (GAr) within EBNA1 that has the capacity to suppress antigen presentation to the major histocompatibility complex (MHC) class I pathway. We discuss the role of the GAr sequence at the level of mRNA translation initiation, rather than at the protein level, as at least part of the mechanism to avoid MHC presentation. Interfering with this mechanism has become the focus of the development of immune-based therapies against EBV-carrying cancers, and some lead compounds that affect translation of GAr-carrying mRNAs have been identified. In addition, we describe the EBV-encoded ZEBRA factor and the switch from the latent to the lytic cycle as an alternative virus-specific target for treating EBV-carrying cancers. Understanding the molecular mechanisms of how EBNA1 and ZEBRA interfere with cellular pathways not only opens new therapeutic approaches but continues to reveal new cell-biological insights on the interplay between host and virus. This review is a tale of discoveries relating to how EBNA1 and ZEBRA have emerged as targets for specific cancer therapies against EBV-carrying diseases, and serves as an illustration of how mRNA translation can play roles in future immune-based strategies to target viral disease.


Assuntos
Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Neoplasias/virologia , Transativadores/metabolismo , Animais , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/terapia , Antígenos Nucleares do Vírus Epstein-Barr/genética , Regulação Viral da Expressão Gênica , Terapia Genética/métodos , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Transativadores/genética , Virulência
11.
Biochim Biophys Acta ; 1843(10): 2315-21, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24583118

RESUMO

Cross-complementation studies offer the possibility to overcome limitations imposed by the inherent complexity of multicellular organisms in the study of human diseases, by taking advantage of simpler model organisms like the budding yeast Saccharomyces cerevisiae. This review deals with, (1) the use of S. cerevisiae as a model organism to study human diseases, (2) yeast-based screening systems for the detection of disease modifiers, (3) Hailey-Hailey as an example of a calcium-related disease, and (4) the presentation of a yeast-based model to search for chemical modifiers of Hailey-Hailey disease. The preliminary experimental data presented and discussed here show that it is possible to use yeast as a model system for Hailey-Hailey disease and suggest that in all likelihood, yeast has the potential to reveal candidate drugs for the treatment of this disorder. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.


Assuntos
ATPases Transportadoras de Cálcio/genética , Cálcio/metabolismo , Modelos Biológicos , Chaperonas Moleculares/genética , Pênfigo Familiar Benigno/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Administração Cutânea , Sinalização do Cálcio , ATPases Transportadoras de Cálcio/deficiência , Fármacos Dermatológicos/farmacologia , Di-Hidroxicolecalciferóis/farmacologia , Expressão Gênica , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/patologia , Mutação , Pênfigo Familiar Benigno/tratamento farmacológico , Pênfigo Familiar Benigno/metabolismo , Pênfigo Familiar Benigno/patologia , Saccharomyces cerevisiae/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia
12.
Dis Model Mech ; 7(4): 435-44, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24558096

RESUMO

Epstein-Barr virus (EBV) is tightly associated with certain human cancers, but there is as yet no specific treatment against EBV-related diseases. The EBV-encoded EBNA1 protein is essential to maintain viral episomes and for viral persistence. As such, EBNA1 is expressed in all EBV-infected cells, and is highly antigenic. All infected individuals, including individuals with cancer, have CD8(+) T cells directed towards EBNA1 epitopes, yet the immune system fails to detect and destroy cells harboring the virus. EBV immune evasion depends on the capacity of the Gly-Ala repeat (GAr) domain of EBNA1 to inhibit the translation of its own mRNA in cis, thereby limiting the production of EBNA1-derived antigenic peptides presented by the major histocompatibility complex (MHC) class I pathway. Here we establish a yeast-based assay for monitoring GAr-dependent inhibition of translation. Using this assay we identify doxorubicin (DXR) as a compound that specifically interferes with the GAr effect on translation in yeast. DXR targets the topoisomerase-II-DNA complexes and thereby causes genomic damage. We show, however, that the genotoxic effect of DXR and various analogs thereof is uncoupled from the effect on GAr-mediated translation control. This is further supported by the observation that etoposide and teniposide, representing another class of topoisomerase-II-DNA targeting drugs, have no effect on GAr-mediated translation control. DXR and active analogs stimulate, in a GAr-dependent manner, EBNA1 expression in mammalian cells and overcome GAr-dependent restriction of MHC class I antigen presentation. These results validate our approach as an effective high-throughput screening assay to identify drugs that interfere with EBV immune evasion and, thus, constitute candidates for treating EBV-related diseases, in particular EBV-associated cancers.


Assuntos
Antivirais/farmacologia , Bioensaio/métodos , Herpesvirus Humano 4/efeitos dos fármacos , Herpesvirus Humano 4/imunologia , Evasão da Resposta Imune/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Apresentação de Antígeno/efeitos dos fármacos , Antivirais/análise , Antivirais/química , Dano ao DNA , Doxorrubicina/química , Doxorrubicina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Antígenos Nucleares do Vírus Epstein-Barr/química , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Células HEK293 , Humanos , Biossíntese de Proteínas/efeitos dos fármacos , Estrutura Terciária de Proteína , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
13.
Microbiol Mol Biol Rev ; 72(1): 157-96, table of contents, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18322038

RESUMO

Retroviruses are an important group of pathogens that cause a variety of diseases in humans and animals. Four human retroviruses are currently known, including human immunodeficiency virus type 1, which causes AIDS, and human T-lymphotropic virus type 1, which causes cancer and inflammatory disease. For many years, there have been sporadic reports of additional human retroviral infections, particularly in cancer and other chronic diseases. Unfortunately, many of these putative viruses remain unproven and controversial, and some retrovirologists have dismissed them as merely "human rumor viruses." Work in this field was last reviewed in depth in 1984, and since then, the molecular techniques available for identifying and characterizing retroviruses have improved enormously in sensitivity. The advent of PCR in particular has dramatically enhanced our ability to detect novel viral sequences in human tissues. However, DNA amplification techniques have also increased the potential for false-positive detection due to contamination. In addition, the presence of many families of human endogenous retroviruses (HERVs) within our DNA can obstruct attempts to identify and validate novel human retroviruses. Here, we aim to bring together the data on "novel" retroviral infections in humans by critically examining the evidence for those putative viruses that have been linked with disease and the likelihood that they represent genuine human infections. We provide a background to the field and a discussion of potential confounding factors along with some technical guidelines. In addition, some of the difficulties associated with obtaining formal proof of causation for common or ubiquitous agents such as HERVs are discussed.


Assuntos
Retrovirus Endógenos/isolamento & purificação , Retrovirus Endógenos/fisiologia , Infecções por Retroviridae/virologia , Doença Crônica , Retrovirus Endógenos/ultraestrutura , Humanos , Virologia/métodos
14.
Proc Natl Acad Sci U S A ; 104(41): 16269-74, 2007 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-17911260

RESUMO

One way to dissect the antibody response to an invading microorganism is to clone the antibody repertoire from immune donors and subsequently characterize the specific antibodies. Recently, methodological advances have allowed investigations of neutralizing antibodies against hepatitis C virus (HCV) in vitro. We have investigated three human mAbs, previously isolated from an individual infected with HCV of genotype 2b, that are known to cross-react in a binding assay to the envelope E2 protein of genotypes 1a and 1b. We now report that two of them have a neutralizing activity with a breadth not previously observed. Indeed, mAbs 1:7 and A8 recognized E2 from all of the six major genotypes, and they neutralized retroviral pseudoparticles [HCV pseudoparticles (HCVpp)] carrying genetically equally diverse HCV envelope glycoproteins. Importantly, these antibodies were also able to neutralize the cell culture infectious HCV clone JFH-1 in vitro, with IC(50) values of 60 ng/ml and 560 ng/ml, respectively. The conformational epitopes of these two broadly reactive antibodies were overlapping yet distinct and involved amino acid residues in the 523-535 region of E2, known to be important for the E2-CD81 interaction. The third antibody clone, representing a dominant population in the initial screen for these antibodies, was less broadly reactive and was unable to neutralize the genotype 2a infectious clone JFH-1. Our results confirm at the clonal level that broadly neutralizing human anti-HCV antibodies can be elicited and that the region amino acids 523-535 of the HCV envelope glycoprotein E2 carries neutralizing epitopes conserved across all genotypes.


Assuntos
Anticorpos Monoclonais/genética , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/genética , Sequência de Aminoácidos , Anticorpos Monoclonais/isolamento & purificação , Linhagem Celular , Técnicas de Química Combinatória , Sequência Conservada , Mapeamento de Epitopos , Epitopos/genética , Biblioteca Gênica , Genótipo , Hepacivirus/classificação , Hepacivirus/genética , Hepatite C/genética , Hepatite C/imunologia , Anticorpos Anti-Hepatite C/isolamento & purificação , Antígenos da Hepatite C/genética , Humanos , Dados de Sequência Molecular , Testes de Neutralização , Engenharia de Proteínas , Homologia de Sequência de Aminoácidos , Transfecção , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
15.
J Virol ; 81(15): 8101-11, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17522218

RESUMO

Hepatitis C virus (HCV) envelope glycoproteins are highly glycosylated, with up to 5 and 11 N-linked glycans on E1 and E2, respectively. Most of the glycosylation sites on HCV envelope glycoproteins are conserved, and some of the glycans associated with these proteins have been shown to play an essential role in protein folding and HCV entry. Such a high level of glycosylation suggests that these glycans can limit the immunogenicity of HCV envelope proteins and restrict the binding of some antibodies to their epitopes. Here, we investigated whether these glycans can modulate the neutralizing activity of anti-HCV antibodies. HCV pseudoparticles (HCVpp) bearing wild-type glycoproteins or mutants at individual glycosylation sites were evaluated for their sensitivity to neutralization by antibodies from the sera of infected patients and anti-E2 monoclonal antibodies. While we did not find any evidence that N-linked glycans of E1 contribute to the masking of neutralizing epitopes, our data demonstrate that at least three glycans on E2 (denoted E2N1, E2N6, and E2N11) reduce the sensitivity of HCVpp to antibody neutralization. Importantly, these three glycans also reduced the access of CD81 to its E2 binding site, as shown by using a soluble form of the extracellular loop of CD81 in inhibition of entry. These data suggest that glycans E2N1, E2N6, and E2N11 are close to the binding site of CD81 and modulate both CD81 and neutralizing antibody binding to E2. In conclusion, this work indicates that HCV glycans contribute to the evasion of HCV from the humoral immune response.


Assuntos
Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Polissacarídeos/imunologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Sequência de Aminoácidos , Anticorpos Monoclonais/imunologia , Epitopos , Glicosilação , Hepacivirus/química , Hepatite C , Humanos , Polissacarídeos/química , Proteínas do Envelope Viral/genética
16.
Hepatology ; 44(6): 1626-34, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17133472

RESUMO

Serum amyloid A (SAA) is an acute phase protein produced by the liver. SAA concentration increases markedly in the serum following inflammation and infection. Large increases in SAA concentration during the acute phase response suggest that SAA has a beneficial role in host defense. This study sought to determine the effect of SAA on hepatitis C virus (HCV) infectivity using retroviral particles pseudotyped with HCV envelope glycoproteins (HCVpp) and the recently developed cell culture system for HCV (HCVcc). SAA inhibited HCVpp and HCVcc infection in a dose-dependent manner by affecting an early step of the virus life cycle. Further characterization with HCVpp indicated that SAA blocks virus entry by interacting with the viral particle. In addition, the antiviral activity of SAA was strongly reduced when high-density lipoproteins (HDL) were coincubated with SAA. However, HDL had only a slight effect on the antiviral activity of SAA when HCVpp was first preincubated with SAA. Furthermore, analyses of SAA in sera of chronic HCV patients revealed the presence of variable levels of SAA with abnormally elevated concentrations in some cases. However, no obvious clinical correlation was found between SAA levels and HCV viral loads. In conclusion, our data demonstrate an antiviral activity for SAA and suggest a tight relationship between SAA and HDL in modulating HCV infectivity.


Assuntos
Hepacivirus/efeitos dos fármacos , Hepacivirus/metabolismo , Proteína Amiloide A Sérica/fisiologia , Células Cultivadas , Hepatite C Crônica/sangue , Humanos , Lipoproteínas HDL/farmacologia , Receptores Depuradores Classe B/fisiologia , Proteína Amiloide A Sérica/farmacologia , Células Tumorais Cultivadas
17.
J Biol Chem ; 281(35): 25177-83, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16809348

RESUMO

Inhibition of viruses at the stage of viral entry provides a route for therapeutic intervention. Because of difficulties in propagating hepatitis C virus (HCV) in cell culture, entry inhibitors have not yet been reported for this virus. However, with the development of retroviral particles pseudotyped with HCV envelope glycoproteins (HCVpp) and the recent progress in amplification of HCV in cell culture (HCVcc), studying HCV entry is now possible. In addition, these systems are essential for the identification and the characterization of molecules that block HCV entry. The lectin cyanovirin-N (CV-N) has initially been discovered based on its potent activity against human immunodeficiency virus. Because HCV envelope glycoproteins are highly glycosylated, we sought to determine whether CV-N has an antiviral activity against this virus. CV-N inhibited the infectivity of HCVcc and HCVpp at low nanomolar concentrations. This inhibition is attributed to the interaction of CV-N with HCV envelope glycoproteins. In addition, we showed that the carbohydrate binding property of CV-N is involved in the anti-HCV activity. Finally, CV-N bound to HCV envelope glycoproteins and blocked the interaction between the envelope protein E2 and CD81, a cell surface molecule involved in HCV entry. These data demonstrate that targeting the glycans of HCV envelope proteins is a promising approach in the development of antiviral therapies to combat a virus that is a major cause of chronic liver diseases. Furthermore, CV-N is a new invaluable tool to further dissect the early steps of HCV entry into host cells.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas de Transporte/fisiologia , Hepacivirus/metabolismo , Polissacarídeos/química , Proteínas do Envelope Viral/química , Antivirais/farmacologia , Proteínas de Bactérias/metabolismo , Carboidratos/química , Proteínas de Transporte/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Dimerização , Glicoproteínas/química , Humanos , Modelos Biológicos , Ligação Proteica , Replicação Viral
18.
J Gen Virol ; 87(Pt 5): 1075-1084, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16603507

RESUMO

Several cellular molecules have been identified as putative receptors for Hepatitis C virus (HCV): CD81 tetraspanin, scavenger receptor class B type I (SR-BI), mannose-binding lectins DC-SIGN and L-SIGN, low-density lipoprotein receptor, heparan sulphate proteoglycans and the asialoglycoprotein receptor. Due to difficulties in propagating HCV in cell culture, most of these molecules have been identified by analysing their interaction with a soluble, truncated form of HCV glycoprotein E2. A recent major step in investigating HCV entry was the development of pseudoparticles (HCVpp), consisting of unmodified HCV envelope glycoproteins assembled onto retroviral core particles. This system has allowed the investigation of the role of candidate receptors in the early steps of the HCV life cycle and the data obtained can now be confirmed with the help of a newly developed cell-culture system that allows efficient amplification of HCV (HCVcc). Interestingly, CD81 and SR-BI have been shown to play direct roles in HCVpp and/or HCVcc entry. However, co-expression of CD81 and SR-BI in non-hepatic cell lines does not lead to HCVpp entry, indicating that other molecule(s), expressed only in hepatic cells, are necessary for HCV entry. In this review, the molecules that have been proposed as potential HCV receptors are described and the experimental data indicating that CD81 and SR-BI are potentially involved in HCV entry are presented.


Assuntos
Hepacivirus/fisiologia , Receptores Virais/fisiologia , Antígenos CD/metabolismo , Antígenos CD/fisiologia , Antígenos CD36/metabolismo , Antígenos CD36/fisiologia , Glicosaminoglicanos/metabolismo , Hepatócitos/virologia , Humanos , Lectinas Tipo C/metabolismo , Receptores de LDL/metabolismo , Receptores Virais/metabolismo , Tetraspanina 28 , Proteínas do Envelope Viral/metabolismo , Replicação Viral
19.
J Virol ; 80(6): 2832-41, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16501092

RESUMO

Due to the recent development of a cell culture model, hepatitis C virus (HCV) can be efficiently propagated in cell culture. This allowed us to reinvestigate the subcellular localization of HCV structural proteins in the context of an infectious cycle. In agreement with previous reports, confocal immunofluorescence analysis of the subcellular localization of HCV structural proteins indicated that, in infected cells, the glycoprotein heterodimer is retained in the endoplasmic reticulum. However, in contrast to other studies, the glycoprotein heterodimer did not accumulate in other intracellular compartments or at the plasma membrane. As previously reported, an association between the capsid protein and lipid droplets was also observed. In addition, a fraction of labeling was consistent with the capsid protein being localized in a membranous compartment that is associated with the lipid droplets. However, in contrast to previous reports, the capsid protein was not found in the nucleus or in association with mitochondria or other well-defined intracellular compartments. Surprisingly, no colocalization was observed between the glycoprotein heterodimer and the capsid protein in infected cells. Electron microscopy analyses allowed us to identify a membrane alteration similar to the previously reported "membranous web." However, no virus-like particles were found in this type of structure. In addition, dense elements compatible with the size and shape of a viral particle were seldom observed in infected cells. In conclusion, the cell culture system for HCV allowed us for the first time to characterize the subcellular localization of HCV structural proteins in the context an infectious cycle.


Assuntos
Hepacivirus/patogenicidade , Frações Subcelulares/metabolismo , Proteínas Estruturais Virais/metabolismo , Proteínas do Capsídeo/metabolismo , Linhagem Celular Tumoral , Dimerização , Retículo Endoplasmático/metabolismo , Imunofluorescência , Glicoproteínas/metabolismo , Hepacivirus/metabolismo , Humanos , Lipídeos , Microscopia Confocal , Proteínas do Envelope Viral/metabolismo , Replicação Viral
20.
J Biol Chem ; 280(9): 7793-9, 2005 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-15632171

RESUMO

The scavenger receptor class B type I (SR-BI) has recently been shown to interact with hepatitis C virus (HCV) envelope glycoprotein E2, suggesting that it might be involved at some step of HCV entry into host cells. However, due to the absence of a cell culture system to efficiently amplify HCV, it is not clear how SR-BI contributes to HCV entry. Here, we sought to determine how high density lipoproteins (HDLs), the natural ligand of SR-BI, affect HCV entry. By using the recently described infectious HCV pseudotyped particles (HCVpps) that display functional E1E2 glycoprotein complexes, we showed that HDLs are able to markedly enhance HCVpp entry. We did not find any evidence of HDL association with HCVpps, suggesting that HCVpps do not enter into target cells using HDL as a carrier to bind to its receptor. Interestingly, lipid-free apoA-I and apoA-II, the major HDL apolipoproteins, were unable to enhance HCVpp infectivity. In addition, drugs inhibiting HDL cholesteryl transfer (block lipid transport (BLT)-2 and BLT-4) reduced HDL enhancement of HCVpp entry, suggesting a role for lipid transfer in facilitating HCVpp entry. Importantly, silencing of SR-BI expression in target cells by RNA interference markedly reduced HDL-mediated enhancement of HCVpp entry. Finally, enhancement of HCVpp entry was also suppressed when the SR-BI binding region on HCV glycoprotein E2 was deleted. Altogether, these data indicate that HDL-mediated enhancement of HCVpp entry involves a complex interplay between SR-BI, HDL, and HCV envelope glycoproteins, and they highlight the active role of HDLs in HCV entry.


Assuntos
Hepacivirus/metabolismo , Lipoproteínas HDL/metabolismo , Receptores Imunológicos/metabolismo , Proteínas do Envelope Viral/química , Antígenos CD36 , Linhagem Celular , Centrifugação com Gradiente de Concentração , Relação Dose-Resposta a Droga , Regulação para Baixo , Inativação Gênica , Glicoproteínas/química , Humanos , Imunoprecipitação , Ligantes , Lipídeos/química , Lipoproteínas HDL/química , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Depuradores , Receptores Depuradores Classe B , Sacarose/farmacologia , Proteínas do Envelope Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA