Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genes Dev ; 31(13): 1370-1381, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28790157

RESUMO

R loops are three-stranded nucleic acid structures consisting of an RNA:DNA heteroduplex and a "looped-out" nontemplate strand. As aberrant formation and persistence of R loops block transcription elongation and cause DNA damage, mechanisms that resolve R loops are essential for genome stability. Here we show that the DEAD (Asp-Glu-Ala-Asp)-box RNA helicase DDX21 efficiently unwinds R loops and that depletion of DDX21 leads to accumulation of cellular R loops and DNA damage. Significantly, the activity of DDX21 is regulated by acetylation. Acetylation by CBP inhibits DDX21 activity, while deacetylation by SIRT7 augments helicase activity and overcomes R-loop-mediated stalling of RNA polymerases. Knockdown of SIRT7 leads to the same phenotype as depletion of DDX21 (i.e., increased formation of R loops and DNA double-strand breaks), indicating that SIRT7 and DDX21 cooperate to prevent R-loop accumulation, thus safeguarding genome integrity. Moreover, DDX21 resolves estrogen-induced R loops on estrogen-responsive genes in breast cancer cells, which prevents the blocking of transcription elongation on these genes.


Assuntos
RNA Helicases DEAD-box/metabolismo , Instabilidade Genômica/genética , Conformação de Ácido Nucleico , Sirtuínas/metabolismo , Acetilação , RNA Helicases DEAD-box/genética , DNA/química , DNA/genética , Dano ao DNA/genética , DNA Helicases/metabolismo , Reparo do DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Ativação Enzimática , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Células MCF-7 , Sirtuínas/genética
2.
Virus Genes ; 53(6): 807-813, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28733876

RESUMO

Our aim was to search for new cellular binding partners for the E6 and E7 oncogenes of beta human papillomaviruses (HPV), whose direct role in skin carcinogenesis has not been thoroughly investigated. By employing glutathione S-transferase pulldown and coimmunoprecipitation, we identified nuclear myosin 1c as a binding partner of HPV 8 E7 protein. As nuclear myosin 1c is an essential component of the RNA polymerase I transcription complex, we studied the effects of HPV 8 E7 protein expression on ribosomal RNA (rRNA) expression. Here we show that the activity of RNA polymerase I is decreased and that pre-rRNA expression is consequently reduced due to HPV 8 E7 expression. However, the expression levels of mature cytoplasmic 18S and 28S rRNA are retained. We propose that by relieving their resources from the energy-consuming process of rRNA transcription, HPV 8 E7 expressing cells might support more efficient virus replication in the differentiating epithelium.


Assuntos
Núcleo Celular/metabolismo , Regulação para Baixo/fisiologia , Miosinas/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Precursores de RNA/metabolismo , RNA Ribossômico/metabolismo , Animais , Células COS , Diferenciação Celular/fisiologia , Chlorocebus aethiops , Proteínas de Ligação a DNA/metabolismo , Epitélio/metabolismo , Epitélio/virologia , Células HEK293 , Humanos , Papillomaviridae/metabolismo , RNA Polimerase I/metabolismo , Replicação Viral/fisiologia
3.
Nat Commun ; 7: 10734, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26867678

RESUMO

SIRT7 is an NAD(+)-dependent protein deacetylase with important roles in ribosome biogenesis and cell proliferation. Previous studies have established that SIRT7 is associated with RNA polymerase I, interacts with pre-ribosomal RNA (rRNA) and promotes rRNA synthesis. Here we show that SIRT7 is also associated with small nucleolar RNP (snoRNPs) that are involved in pre-rRNA processing and rRNA maturation. Knockdown of SIRT7 impairs U3 snoRNA dependent early cleavage steps that are necessary for generation of 18S rRNA. Mechanistically, SIRT7 deacetylates U3-55k, a core component of the U3 snoRNP complex, and reversible acetylation of U3-55k modulates the association of U3-55k with U3 snoRNA. Deacetylation by SIRT7 enhances U3-55k binding to U3 snoRNA, which is a prerequisite for pre-rRNA processing. Under stress conditions, SIRT7 is released from nucleoli, leading to hyperacetylation of U3-55k and attenuation of pre-rRNA processing. The results reveal a multifaceted role of SIRT7 in ribosome biogenesis, regulating both transcription and processing of rRNA.


Assuntos
Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA/genética , RNA Ribossômico 18S/metabolismo , RNA Nucleolar Pequeno/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Sirtuínas/genética , Northern Blotting , Western Blotting , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Imunofluorescência , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Imunoprecipitação , Técnicas In Vitro
4.
Proc Natl Acad Sci U S A ; 113(4): 990-5, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26747605

RESUMO

Cell adhesion and migration are highly dynamic biological processes that play important roles in organ development and cancer metastasis. Their tight regulation by small GTPases and protein phosphorylation make interrogation of these key processes of great importance. We now show that the conserved dual-specificity phosphatase human cell-division cycle 14A (hCDC14A) associates with the actin cytoskeleton of human cells. To understand hCDC14A function at this location, we manipulated native loci to ablate hCDC14A phosphatase activity (hCDC14A(PD)) in untransformed hTERT-RPE1 and colorectal cancer (HCT116) cell lines and expressed the phosphatase in HeLa FRT T-Rex cells. Ectopic expression of hCDC14A induced stress fiber formation, whereas stress fibers were diminished in hCDC14A(PD) cells. hCDC14A(PD) cells displayed faster cell migration and less adhesion than wild-type controls. hCDC14A colocalized with the hCDC14A substrate kidney- and brain-expressed protein (KIBRA) at the cell leading edge and overexpression of KIBRA was able to reverse the phenotypes of hCDC14A(PD) cells. Finally, we show that ablation of hCDC14A activity increased the aggressive nature of cells in an in vitro tumor formation assay. Consistently, hCDC14A is down-regulated in many tumor tissues and reduced hCDC14A expression is correlated with poorer survival of patients with cancer, to suggest that hCDC14A may directly contribute to the metastatic potential of tumors. Thus, we have uncovered an unanticipated role for hCDC14A in cell migration and adhesion that is clearly distinct from the mitotic and cytokinesis functions of Cdc14/Flp1 in budding and fission yeast.


Assuntos
Movimento Celular , Neoplasias/patologia , Monoéster Fosfórico Hidrolases/fisiologia , Adesão Celular , Células HCT116 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Metástase Neoplásica , Fosfoproteínas/fisiologia , Proteínas Tirosina Fosfatases , Fibras de Estresse/fisiologia
5.
PLoS One ; 6(2): e14711, 2011 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-21379580

RESUMO

Entry into and progression through mitosis depends on phosphorylation and dephosphorylation of key substrates. In yeast, the nucleolar phosphatase Cdc14 is pivotal for exit from mitosis counteracting Cdk1-dependent phosphorylations. Whether hCdc14B, the human homolog of yeast Cdc14, plays a similar function in mitosis is not yet known. Here we show that hCdc14B serves a critical role in regulating progression through mitosis, which is distinct from hCdc14A. Unscheduled overexpression of hCdc14B delays activation of two master regulators of mitosis, Cdc25 and Cdk1, and slows down entry into mitosis. Depletion of hCdc14B by RNAi prevents timely inactivation of Cdk1/cyclin B and dephosphorylation of Cdc25, leading to severe mitotic defects, such as delay of metaphase/anaphase transition, lagging chromosomes, multipolar spindles and binucleation. The results demonstrate that hCdc14B-dependent modulation of Cdc25 phosphatase and Cdk1/cyclin B activity is tightly linked to correct chromosome segregation and bipolar spindle formation, processes that are required for proper progression through mitosis and maintenance of genomic stability.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclina B/metabolismo , Fosfatases de Especificidade Dupla/fisiologia , Mitose , Fosfatases cdc25/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Ciclo Celular/fisiologia , Células Cultivadas , Fosfatases de Especificidade Dupla/antagonistas & inibidores , Fosfatases de Especificidade Dupla/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Instabilidade Genômica/genética , Células HeLa , Humanos , Mitose/efeitos dos fármacos , Mitose/genética , Mitose/fisiologia , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Fosforilação/genética , RNA Interferente Pequeno/farmacologia , Fatores de Tempo
6.
Proc Natl Acad Sci U S A ; 106(42): 17781-6, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19815529

RESUMO

AMP-activated protein kinase (AMPK) senses changes in the intracellular AMP/ATP ratio, switching off energy-consuming processes and switching on catabolic pathways in response to energy depletion. Here, we show that AMPK down-regulates rRNA synthesis under glucose restriction by phosphorylating the RNA polymerase I (Pol I)-associated transcription factor TIF-IA at a single serine residue (Ser-635). Phosphorylation by AMPK impairs the interaction of TIF-IA with the TBP-containing promoter selectivity factor SL1, thereby precluding the assembly of functional transcription initiation complexes. Mutation of Ser-635 compromises down-regulation of Pol I transcription in response to low energy supply, supporting that activation of AMPK adapts rRNA synthesis to nutrient availability and the cellular energy status.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , RNA Ribossômico/biossíntese , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Metabolismo Energético , Glucose/metabolismo , Humanos , Camundongos , Modelos Biológicos , Células NIH 3T3 , Fosforilação , Proteínas Pol1 do Complexo de Iniciação de Transcrição/antagonistas & inibidores , Proteínas Pol1 do Complexo de Iniciação de Transcrição/química , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Polimerase I/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química , Transcrição Gênica
7.
EMBO Rep ; 7(5): 525-30, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16514417

RESUMO

Nuclear actin and myosin 1 (NM1) are key regulators of gene transcription. Here, we show by biochemical fractionation of nuclear extracts, protein-protein interaction studies and chromatin immunoprecipitation assays that NM1 is part of a multiprotein complex that contains WICH, a chromatin remodelling complex containing WSTF (Williams syndrome transcription factor) and SNF2h. NM1, WSTF and SNF2h were found to be associated with RNA polymerase I (Pol I) and ribosomal RNA genes (rDNA). RNA interference-mediated knockdown of NM1 and WSTF reduced pre-rRNA synthesis in vivo, and antibodies to WSTF inhibited Pol I transcription on pre-assembled chromatin templates but not on naked DNA. The results indicate that NM1 cooperates with WICH to facilitate transcription on chromatin.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Miosina Tipo I/metabolismo , Proteínas Nucleares/metabolismo , RNA Polimerase I/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Miosina Tipo I/química , Miosina Tipo I/genética , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Ligação Proteica/genética , RNA Polimerase I/biossíntese , RNA Polimerase I/química , Fatores de Transcrição/química , Fatores de Transcrição/genética
8.
Mol Cell Biol ; 24(12): 5421-33, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15169904

RESUMO

Pescadillo (PES1) and the upstream binding factor (UBF1) play a role in ribosome biogenesis, which regulates cell size, an important component of cell proliferation. We have investigated the effects of PES1 and UBF1 on the growth and differentiation of cell lines derived from 32D cells, an interleukin-3 (IL-3)-dependent murine myeloid cell line. Parental 32D cells and 32D IGF-IR cells (expressing increased levels of the type 1 insulin-like growth factor I [IGF-I] receptor [IGF-IR]) do not express insulin receptor substrate 1 (IRS-1) or IRS-2. 32D IGF-IR cells differentiate when the cells are shifted from IL-3 to IGF-I. Ectopic expression of IRS-1 inhibits differentiation and transforms 32D IGF-IR cells into a tumor-forming cell line. We found that PES1 and UBF1 increased cell size and/or altered the cell cycle distribution of 32D-derived cells but failed to make them IL-3 independent. PES1 and UBF1 also failed to inhibit the differentiation program initiated by the activation of the IGF-IR, which is blocked by IRS-1. 32D IGF-IR cells expressing PES1 or UBF1 differentiate into granulocytes like their parental cells. In contrast, PES1 and UBF1 can transform mouse embryo fibroblasts that have high levels of endogenous IRS-1 and are not prone to differentiation. Our results provide a model for one of the theories of myeloid leukemia, in which both a stimulus of proliferation and a block of differentiation are required for leukemia development.


Assuntos
Células Mieloides/citologia , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/fisiologia , Proteínas/genética , Proteínas/fisiologia , Animais , Sequência de Bases , Ciclo Celular , Proteínas de Ciclo Celular , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Divisão Celular/genética , Divisão Celular/fisiologia , Linhagem Celular , DNA Complementar/genética , Proteínas Substratos do Receptor de Insulina , Fator de Crescimento Insulin-Like I/farmacologia , Leucemia Mieloide/etiologia , Camundongos , Modelos Biológicos , Células Mieloides/efeitos dos fármacos , Células Mieloides/fisiologia , Fosfoproteínas/genética , Fosfoproteínas/fisiologia , Proteínas de Ligação a RNA , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/fisiologia , Transdução Genética
9.
J Biol Chem ; 278(32): 29824-9, 2003 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-12759351

RESUMO

The human Cdc25A phosphatase plays a pivotal role at the G1/S transition by activating cyclin E and A/Cdk2 complexes through dephosphorylation. In response to ionizing radiation, Cdc25A is phosphorylated by both Chk1 and Chk2 on Ser-123. This in turn leads to ubiquitylation and rapid degradation of Cdc25A by the proteasome resulting in cell cycle arrest. We found that in response to UV irradiation, Cdc25A is phosphorylated at a different serine residue, Ser-75. Significantly, Cdc25A mutants carrying alanine instead of either Ser-75 or Ser-123 demonstrate that only Ser-75 mediates protein stabilization in response to UV-induced DNA damage. As a consequence, cyclin E/Cdk2 kinase activity was high. Furthermore, we find that Cdc25A was phosphorylated by Chk1 on Ser-75 in vitro and that the same site was also phosphorylated in vivo. Taken together, these data strongly suggest that phosphorylation of Cdc25A on Ser-75 by Chk1 and its subsequent degradation is required to delay cell cycle progression in response to UV-induced DNA lesions.


Assuntos
Proteínas Serina-Treonina Quinases , Serina/química , Fosfatases cdc25/química , Alanina/química , Western Blotting , Linhagem Celular , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2 , Ciclina E/metabolismo , DNA/metabolismo , Dano ao DNA , Eletroforese em Gel de Poliacrilamida , Glutationa Transferase/metabolismo , Células HeLa , Histidina/química , Humanos , Modelos Biológicos , Mutação , Mapeamento de Peptídeos , Fosforilação , Plasmídeos/metabolismo , Testes de Precipitina , Proteínas Quinases/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Fase S , Fatores de Tempo , Transfecção , Células Tumorais Cultivadas , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA