Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1351583, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807651

RESUMO

Bacterial natural products (BNPs) are very important sources of leads for drug development and chemical novelty. The possibility to perform late-stage diversification of BNPs using biocatalysis is an attractive alternative route other than total chemical synthesis or metal complexation reactions. Although biocatalysis is gaining popularity as a green chemistry methodology, a vast majority of orphan sequenced genomic data related to metabolic pathways for BNP biosynthesis and its tailoring enzymes are underexplored. In this review, we report a systematic overview of biotransformations of 21 molecules, which include derivatization by halogenation, esterification, reduction, oxidation, alkylation and nitration reactions, as well as degradation products as their sub-derivatives. These BNPs were grouped based on their biological activities into antibacterial (5), antifungal (5), anticancer (5), immunosuppressive (2) and quorum sensing modulating (4) compounds. This study summarized 73 derivatives and 16 degradation sub-derivatives originating from 12 BNPs. The highest number of biocatalytic reactions was observed for drugs that are already in clinical use: 28 reactions for the antibacterial drug vancomycin, followed by 18 reactions reported for the immunosuppressive drug rapamycin. The most common biocatalysts include oxidoreductases, transferases, lipases, isomerases and haloperoxidases. This review highlights biocatalytic routes for the late-stage diversification reactions of BNPs, which potentially help to recognize the structural optimizations of bioactive scaffolds for the generation of new biomolecules, eventually leading to drug development.

2.
Dalton Trans ; 53(5): 2218-2230, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38193719

RESUMO

Inspired by the emergence of resistance to currently available antifungal therapy and by the great potential of metal complexes for the treatment of various diseases, we synthesized three new silver(I) complexes containing clinically used antifungal azoles as ligands, [Ag(ecz)2]SbF6 (1, ecz is econazole), {[Ag(vcz)2]SbF6}n (2, vcz is voriconazole), and [Ag(ctz)2]SbF6 (3, ctz is clotrimazole), and investigated their antimicrobial properties. The synthesized complexes were characterized by mass spectrometry, IR, UV-vis and 1H NMR spectroscopy, cyclic voltammetry, and single-crystal X-ray diffraction analysis. In the mononuclear complexes 1 and 3 with ecz and ctz, respectively, the silver(I) ion has the expected linear geometry, in which the azoles are monodentately coordinated to this metal center through the N3 imidazole nitrogen atom. In contrast, the vcz-containing complex 2 has a polymeric structure in the solid state in which the silver(I) ions are coordinated by four nitrogen atoms in a distorted tetrahedral geometry. DFT calculations were done to predict the most favorable structures of the studied complexes in DMSO solution. All the studied silver(I) complexes have shown excellent antifungal and good to moderate antibacterial activities with minimal inhibitory concentration (MIC) values in the ranges of 0.01-27.1 and 2.61-47.9 µM on the selected panel of fungi and bacteria, respectively. Importantly, the complexes 1-3 have exhibited a significantly improved antifungal activity compared to the free azoles, with the most pronounced effect observed in the case of complex 2 compared to the parent vcz against Candida glabrata with an increase of activity by five orders of magnitude. Moreover, the silver(I)-azole complexes 2 and 3 significantly inhibited the formation of C. albicans hyphae and biofilms at the subinhibitory concentration of 50% MIC. To investigate the impact of the complex 3 more thoroughly on Candida pathogenesis, its effect on the adherence of C. albicans to A549 cells (human adenocarcinoma alveolar basal epithelial cells), as an initial step of the invasion of host cells, was studied.


Assuntos
Complexos de Coordenação , Prata , Humanos , Prata/farmacologia , Prata/química , Candida , Antifúngicos/farmacologia , Antifúngicos/química , Azóis/farmacologia , Candida albicans , Testes de Sensibilidade Microbiana , Íons/farmacologia , Nitrogênio , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
3.
Enzyme Microb Technol ; 171: 110322, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37722241

RESUMO

Phenazines, including pyocyanin (PYO) and 1-hydroxyphenazine (1-HP) are extracellular secondary metabolites and multifunctional pigments of Pseudomonas aeruginosa responsible for its blue-green color. These versatile molecules are electrochemically active, involved in significant biological activities giving fitness to the host, but also recognized as antimicrobial and anticancer agents. Their wider application is still limited partly due to the cost of carbon substrate for production, which can be solved by the utilization of carbon from food waste within the biorefinery concept. In this study, a variety of food waste streams (banana peel, potato peel, potato washing, stale bread, yoghurt, processed meat, boiled eggs and mixed canteen waste) was used as sole nutrient source in submerged cultures of P. aeruginosa BK25H. Stale bread was identified as the most suitable substrate to support phenazine biopigments production and bacterial growth. This was further increased in 5-liter fermenter when on average 5.2 mg L-1 of PYO and 4.4 mg L-1 of 1-HP were purified after 24 h batch cultivations from the fermentation medium consisting of homogenized stale bread in tap water. Purified biopigments showed moderate antimicrobial activity, and showed different toxicity profiles, with PYO not being toxic against Caenorhabditis elegans, a free-living soil nematode up to 300 µg mL-1 and 1-HP showing lethal effects at 75 µg mL-1. Therefore, stale bread waste stream with minimal pretreatment should be considered as suitable biorefinery feedstock, as it can support the production of valuable biopigments such as phenazines.

4.
Chem Biodivers ; 20(4): e202300134, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36898082

RESUMO

This is the first report on the separation and biological assessment of all metabolites derived from Pulicaria armena (Asteraceae) which is an endemic species narrowly distributed in the eastern part of Turkey. The phytochemical analysis of P. armena resulted in the identification of one simple phenolic glucoside together with eight flavon and flavonol derivatives whose chemical structures were elucidated by NMR experiments and by the comparison of the spectral data with the relevant literature. The screening of all molecules for their antimicrobial, anti-quorum sensing, and cytotoxic activities revealed the biological potential of some of the isolated compounds. Additionally, quorum sensing inhibitory activity of quercetagetin 5,7,3' trimethyl ether was supported by molecular docking studies in the active site of LasR which is the primary regulator of this cell-to-cell communication system in bacteria. Lastly, the critical molecular properties indicating drug-likeness of the compounds isolated from P. armena were predicted. As microbial infections can be a serious problem for cancer patients with compromised immune systems, this comprehensive phytochemical research on P. armena with its anti-quorum sensing and cytotoxic compounds can provide a new approach to the treatment.


Assuntos
Anti-Infecciosos , Asteraceae , Flavonoides , Pulicaria , Percepção de Quorum , Humanos , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Asteraceae/química , Flavonoides/química , Flavonoides/farmacologia , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/farmacologia , Pulicaria/química , Percepção de Quorum/efeitos dos fármacos
5.
Molecules ; 27(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744855

RESUMO

Prodigiosins (prodiginines) are a class of bacterial secondary metabolites with remarkable biological activities and color. In this study, optimized production, purification, and characterization of prodigiosin (PG) from easily accessible Serratia marcescens ATCC 27117 strain has been achieved to levels of 14 mg/L of culture within 24 h. Furthermore, environmentally friendly bromination of produced PG was used to afford both novel mono- and dibrominated derivatives of PG. PG and its Br derivatives showed anticancer potential with IC50 values range 0.62-17.00 µg/mL for all tested cancer cell lines and induction of apoptosis but low selectivity against healthy cell lines. All compounds did not affect Caenorhabditiselegans at concentrations up to 50 µg/mL. However, an improved toxicity profile of Br derivatives in comparison to parent PG was observed in vivo using zebrafish (Danio rerio) model system, when 10 µg/mL applied at 6 h post fertilization caused death rate of 100%, 30% and 0% by PG, PG-Br, and PG-Br2, respectively, which is a significant finding for further structural optimizations of bacterial prodigiosins. The drug-likeness of PG and its Br derivatives was examined, and the novel Br derivatives obey the Lipinski's "rule of five", with an exemption of being more lipophilic than PG, which still makes them good targets for further structural optimization.


Assuntos
Neoplasias , Prodigiosina , Animais , Apoptose , Prodigiosina/metabolismo , Prodigiosina/farmacologia , Serratia marcescens/metabolismo , Peixe-Zebra/metabolismo
6.
Eur J Med Chem ; 204: 112583, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32731186

RESUMO

Combination therapy targeting both tumor growth and vascularization is considered to be a cornerstone for colorectal carcinomas (CRC) treatment. However, the major obstacles of most clinical anticancer drugs are their weak selective activity towards cancer cells and inherent inner organs toxicity, accompanied with fast drug resistance development. In our effort to discover novel selective and non-toxic agents effective against CRC, we designed, synthesized and characterized a series of rhenium(I) tricarbonyl-based complexes with increased lipophilicity. Two of these novel compounds were discovered to possess remarkable anticancer, anti-angiogenic and antimetastatic activity in vivo (zebrafish-human HCT-116 xenograft model), being effective at very low doses (1-3 µM). At doses as high as 250 µM the complexes did not provoke toxicity issues encountered in clinical anticancer drugs (cardio-, hepato-, and myelotoxicity). In vivo assays showed that the two compounds exceed the anti-tumor and anti-angiogenic activity of clinical drugs cisplatin and sunitinib malate, and display a large therapeutic window.


Assuntos
Neoplasias Colorretais/patologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Desenho de Fármacos , Rênio/química , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Relação Dose-Resposta a Droga , Células HCT116 , Humanos , Metástase Neoplásica , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
7.
Pharmaceutics ; 12(5)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466116

RESUMO

Systemic toxicity and severe side effects are commonly associated with anticancer chemotherapies. New strategies based on enhanced drug selectivity and targeted delivery to cancer cells while leaving healthy tissue undamaged can reduce the global patient burden. Herein, we report the design, synthesis and characterization of a bio-inspired hybrid multifunctional drug delivery system based on diatom microalgae. The microalgae's surface was chemically functionalized with hybrid vitamin B12-photoactivatable molecules and the materials further loaded with highly active rhenium(I) tricarbonyl anticancer complexes. The constructs showed enhanced adherence to colorectal cancer (CRC) cells and slow release of the chemotherapeutic drugs. The overall toxicity of the hybrid multifunctional drug delivery system was further enhanced by photoactivation of the microalgae surface. Depending on the construct and anticancer drug, a 2-fold increase in the cytotoxic efficacy of the drug was observed upon light irradiation. The use of this targeted drug delivery strategy, together with selective spatial-temporal light activation, may lead to lower effective concentration of anticancer drugs, thereby reducing medication doses, possible side effects and overall burden for the patient.

8.
J Inorg Biochem ; 208: 111089, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32442762

RESUMO

Three novel Zn(II) complexes, [ZnCl2(qz)2] (1), [ZnCl2(1,5-naph)]n (2) and [ZnCl2(4,7-phen)2] (3), where qz is quinazoline, 1,5-naph is 1,5-naphthyridine and 4,7-phen is 4,7-phenanthroline, were synthesized by the reactions of ZnCl2 and the corresponding N-heterocyclic ligand in 1:2 molar ratio in ethanol at ambient temperature. The characterization of these complexes was done by NMR, IR and UV-Vis spectroscopy, and their crystal structures were determined by single-crystal X-ray diffraction analysis. Complexes 1 and 3 are mononuclear species, in which Zn(II) ion is tetrahedrally coordinated by two nitrogen atoms belonging to two qz or 4,7-phen ligands, respectively, and by two chloride anions, while complex 2 is a 1D coordination polymer that contains 1,5-naph as bridging ligand between two metal ions. In agar disc-diffusion assay, complexes 1-3 manifested good inhibitory activity against two investigated Candida strains (C. albicans and C. parapsilosis), while not inducing toxic effects on the healthy human fibroblast cell line (MRC-5). This activity was not fungicidal, as revealed by the broth microdilution assay, however complex 3 showed the ability to modulate Candida hyphae formation, which is an important process during infection and showed significant synergistic effect with clinically used antifungal polyene nystatin.


Assuntos
Antifúngicos , Candida albicans/crescimento & desenvolvimento , Candida parapsilosis/crescimento & desenvolvimento , Complexos de Coordenação , Compostos Heterocíclicos , Nistatina , Zinco , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/agonistas , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Sinergismo Farmacológico , Compostos Heterocíclicos/agonistas , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Nistatina/agonistas , Nistatina/química , Nistatina/farmacologia , Zinco/agonistas , Zinco/química , Zinco/farmacologia
9.
Microbiologyopen ; 9(3): e986, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31989798

RESUMO

Applying a bioactivity-guided isolation approach, staurosporine was separated and identified as the active principle in the culture extract of the new isolate Streptomyces sp. BV410 collected from the chamomile rhizosphere. The biotechnological production of staurosporine by strain BV410 was optimized to yield 56 mg/L after 14 days of incubation in soy flour-glucose-starch-mannitol-based fermentation medium (JS). The addition of FeSO4 significantly improved the staurosporine yield by 30%, while the addition of ZnSO4 significantly reduced staurosporine yield by 62% in comparison with the starting conditions. Although staurosporine was first isolated in 1977 from Lentzea albida (now Streptomyces staurosporeus) and its potent kinase inhibitory effect has been established, here, the biological activity of this natural product was assessed in depth in vivo using a selection of transgenic zebrafish (Danio rerio) models, including Tg(fli1:EGFP) with green fluorescent protein-labeled endothelial cells allowing visualization and monitoring of blood vessels. This confirmed a remarkable antiangiogenic activity of the compound at doses of 1 ng/ml (2.14 nmol/L) which is below doses inducing toxic effects (45 ng/ml; 75 nmol/L). A new, efficient producing strain of commercially significant staurosporine has been described along with optimized fermentation conditions, which may lead to optimization of the staurosporine scaffold and its wider applicability.


Assuntos
Inibidores da Angiogênese/farmacologia , Antifúngicos/farmacologia , Camomila/microbiologia , Rizosfera , Estaurosporina/biossíntese , Estaurosporina/farmacologia , Streptomyces/isolamento & purificação , Streptomyces/metabolismo , Animais , Filogenia , RNA Ribossômico 16S , Metabolismo Secundário , Streptomyces/classificação , Streptomyces/genética , Peixe-Zebra
10.
J Inorg Biochem ; 174: 156-168, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28675847

RESUMO

Gold(III) complexes with 1,7- and 4,7-phenanthroline ligands, [AuCl3(1,7-phen-κN7)] (1) and [AuCl3(4,7-phen-κN4)] (2) were synthesized and structurally characterized by spectroscopic (NMR, IR and UV-vis) and single-crystal X-ray diffraction techniques. In these complexes, 1,7- and 4,7-phenanthrolines are monodentatedly coordinated to the Au(III) ion through the N7 and N4 nitrogen atoms, respectively. In comparison to the clinically relevant anti-angiogenic compounds auranofin and sunitinib, gold(III)-phenanthroline complexes showed from 1.5- to 20-fold higher anti-angiogenic potential, and 13- and 118-fold lower toxicity. Among the tested compounds, complex 1 was the most potent and may be an excellent anti-angiogenic drug candidate, since it showed strong anti-angiogenic activity in zebrafish embryos achieving IC50 value (concentration resulting in an anti-angiogenic phenotype at 50% of embryos) of 2.89µM, while had low toxicity with LC50 value (the concentration inducing the lethal effect of 50% embryos) of 128µM. Molecular docking study revealed that both complexes and ligands could suppress angiogenesis targeting the multiple major regulators of angiogenesis, such as the vascular endothelial growth factor receptor (VEGFR-2), the matrix metalloproteases (MMP-2 and MMP-9), and thioredoxin reductase (TrxR1), where the complexes showed higher binding affinity in comparison to ligands, and particularly to auranofin, but comparable to sunitinib, an anti-angiogenic drug of clinical relevance.


Assuntos
Inibidores da Angiogênese/química , Auranofina/química , Indóis/química , Metaloproteinase 2 da Matriz/química , Metaloproteinase 9 da Matriz/química , Simulação de Acoplamento Molecular , Fenantrolinas/química , Pirróis/química , Tiorredoxina Redutase 1/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Células A549 , Animais , Células HeLa , Humanos , Sunitinibe , Peixe-Zebra
11.
J Inorg Biochem ; 171: 76-89, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28371681

RESUMO

In order to improve antimicrobial effects of previously studied meso-tetrakis(4-ferrocenylphenyl)porphyrin 1, we have modified its structure by replacing two trans-positioned ferrocenylphenyl moieties with methoxy methylene substituted tert-butylphenyl moieties. Newly synthesized 54,154-bis-(ferrocenyl)-104,204-bis-(tert-butyl)-102,106,202,206-tetrakis-(methoxy-methylene)-5,10,15,20-tetraphenylporphyrin 4 was chemically characterized in detail (by NMR, UV/Vis, IR, MALDI-TOF and ESI MS spectrometry, cyclic voltammetry, prediction of the relative lipophilicity as well as computational methods) and its biological effects were studied in terms of its antibacterial and antifungal activity (both with and without photoactivation), cytotoxicity, hemolysis and DNA cleavage. New ferrocene bearing porphyrin 4 has demonstrated a broader antimicrobial spectrum and modified effects on eukaryotic cells compared to 1. This was discussed in terms of its i) increased lipophilicity, while exhibiting lower toxicity, and ii) the redox potential of a two-electron process that is shifted to lower values, in comparison to ferrocene, thus, entering the physiologically available range and being activated towards redox interactions with biomolecules.


Assuntos
Bactérias/efeitos dos fármacos , Candida/efeitos dos fármacos , Compostos Ferrosos/química , Metalocenos/química , Porfirinas/química , Porfirinas/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxirredução , Porfirinas/toxicidade , Coloração e Rotulagem
12.
Dalton Trans ; 46(8): 2594-2608, 2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28155927

RESUMO

Gold(iii) complexes with different l-histidine-containing dipeptides, [Au(Gly-l-His-NA,NP,N3)Cl]Cl·3H2O (1a), [Au(Gly-l-His-NA,NP,N3)Cl]NO3·1.25H2O (1b), [Au(l-Ala-l-His-NA,NP,N3)Cl][AuCl4]·H2O (2a), [Au(l-Ala-l-His-NA,NP,N3)Cl]NO3·2.5H2O (2b), [Au(l-Val-l-His-NA,NP,N3)Cl]Cl·2H2O (3), [Au(l-Leu-l-His-NA,NP,N3)Cl]Cl (4a) and [Au(l-Leu-l-His-NA,NP,N3)Cl][AuCl4]·H2O (4b), have been synthesized and structurally characterized by spectroscopic (1H NMR, IR and UV-vis) and single-crystal X-ray diffraction techniques. The antimicrobial efficiency of these gold(iii) complexes, along with K[AuCl4] and the corresponding dipeptides, was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi, displaying their moderate inhibiting activity. Moreover, the cytotoxic properties of the investigated complexes were assessed against the normal human lung fibroblast cell line (MRC5) and two human cancer, cervix (HeLa) and lung (A549) cell lines. None of the complexes exerted significant cytotoxic activity; nevertheless complexes that did show selectivity in terms of cancer vs. normal cell lines (2a/b and 4a/b) have been evaluated using zebrafish (Danio rerio) embryos for toxicity and antiangiogenic potential. Although the gold(iii) complexes achieved an antiangiogenic effect comparable to the known angiogenic inhibitors auranofin and sunitinib malate at 30-fold higher concentrations, they had no cardiovascular side effects, which commonly accompany auranofin and sunitinib malate treatment. Finally, binding of the gold(iii) complexes to the active sites of both human and bacterial (Escherichia coli) thioredoxin reductases (TrxRs) was demonstrated by conducting a molecular docking study, suggesting that the mechanism of biological action of these complexes can be associated with their interaction with the TrxR active site.


Assuntos
Dipeptídeos/química , Ouro/química , Histidina/química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Domínio Catalítico , Escherichia coli/enzimologia , Humanos , Simulação de Acoplamento Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/metabolismo , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA