Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Card Surg ; 35(7): 1508-1513, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32485041

RESUMO

BACKGROUND: The aortic valve (AV) is the most commonly affected valve in valvular heart diseases (VHDs). The objective of the study is to identify microRNA (miRNA) molecules expressed in VHDs and the differential expression patterns of miRNA in AVs with either calcification or rheumatism etiologies. METHODS: Human AVs were collected during valve replacement surgery. RNA was extracted and miRNA containing libraries were prepared and sequenced using the next generation sequencing (NGS) approach. miRNAs identified as differentially expressed between the two etiologies were validated by quantitative real-time polymerase chain reaction (qPCR). The receiver operating characteristic (ROC) curve analysis was performed to examine the ability of relevant miRNA to differentiate between calcification and rheumatism etiologies. RESULTS: Rheumatic and calcified AV samples were prepared for the NGS and were successfully sequenced. The expression was validated by the qPCR approach in 46 AVs, 13 rheumatic, and 33 calcified AVs, confirming that miR-145-5p, miR-199a-5p, and miR-5701 were significantly higher in rheumatic AVs as compared with calcified AVs. ROC curve analysis revealed that miR-145-5p had a sensitivity of 76.92% and a specificity of 94.12%, area under the curve (AUC) = 0.88 (P = .0001), and miR-5701 had a sensitivity of 84.62% and a specificity of 76.47%, AUC = 0.78 (P = .0001), whereas miR-199a-5p had a sensitivity of 84.62%, and a specificity of 57.58%, AUC = 0.73 (P = .0083). CONCLUSION: We documented differential miRNA expression between AV disease etiologies. The miRNAs identified in this study advance our understanding of the mechanisms underlining AV disease.


Assuntos
Valva Aórtica/metabolismo , Calcinose/complicações , Cardiomiopatias/complicações , Expressão Gênica , Doenças das Valvas Cardíacas/etiologia , Doenças das Valvas Cardíacas/genética , MicroRNAs/análise , MicroRNAs/genética , Doenças Reumáticas/complicações , Idoso , Valva Aórtica/cirurgia , Calcinose/genética , Cardiomiopatias/genética , Feminino , Doenças das Valvas Cardíacas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Doenças Reumáticas/genética
2.
J Biol Chem ; 293(6): 2206-2218, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29233889

RESUMO

Feedback control is a key mechanism in signal transduction, intimately involved in regulating the outcome of the cellular response. Here, we report a novel mechanism by which PHLDA1, Pleckstrin homology-like domain, family A, member 1, negatively regulates ErbB receptor signaling by inhibition of receptor oligomerization. We have found that the ErbB3 ligand, heregulin, induces PHILDA1 expression in MCF-7 cells. Transcriptionally-induced PHLDA1 protein directly binds to ErbB3, whereas knockdown of PHLDA1 increases complex formation between ErbB3 and ErbB2. To provide insight into the mechanism for our time-course and single-cell experimental observations, we performed a systematic computational search of network topologies of the mathematical models based on receptor dimer-tetramer formation in the ErbB activation processes. Our results indicate that only a model in which PHLDA1 inhibits formation of both dimers and tetramer can explain the experimental data. Predictions made from this model were further validated by single-molecule imaging experiments. Our studies suggest a unique regulatory feature of PHLDA1 to inhibit the ErbB receptor oligomerization process and thereby control the activity of receptor signaling network.


Assuntos
Receptor ErbB-3/metabolismo , Fatores de Transcrição/metabolismo , Humanos , Células MCF-7 , Modelos Químicos , Neuregulina-1/metabolismo , Multimerização Proteica , Transdução de Sinais , Imagem Individual de Molécula , Análise de Célula Única , Fatores de Transcrição/fisiologia , Transcrição Gênica
3.
Cell Syst ; 2(1): 38-48, 2016 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-27136688

RESUMO

Dynamic interactions between RhoA and Rac1, members of the Rho small GTPase family, play a vital role in the control of cell migration. Using predictive mathematical modeling, mass spectrometry-based quantitation of network components, and experimental validation in MDA-MB-231 mesenchymal breast cancer cells, we show that a network containing Rac1, RhoA, and PAK family kinases can produce bistable, switch-like responses to a graded PAK inhibition. Using a small chemical inhibitor of PAK, we demonstrate that cellular RhoA and Rac1 activation levels respond in a history-dependent, bistable manner to PAK inhibition. Consequently, we show that downstream signaling, actin dynamics, and cell migration also behave in a bistable fashion, displaying switches and hysteresis in response to PAK inhibition. Our results demonstrate that PAK is a critical component in the Rac1-RhoA inhibitory crosstalk that governs bistable GTPase activity, cell morphology, and cell migration switches.


Assuntos
Citoesqueleto de Actina , Actinas , Linhagem Celular Tumoral , Movimento Celular , Citoesqueleto , Humanos , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP , Proteína rhoA de Ligação ao GTP
4.
Biosci Rep ; 35(2)2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25643809

RESUMO

In MCF-7 breast cancer cells epidermal growth factor (EGF) induces cell proliferation, whereas heregulin (HRG)/neuregulin (NRG) induces irreversible phenotypic changes accompanied by lipid accumulation. Although these changes in breast cancer cells resemble processes that take place in the tissue, there is no understanding of signalling mechanisms regulating it. To identify molecular mechanisms mediating this cell-fate decision process, we applied different perturbations to pathways activated by these growth factors. The results demonstrate that phosphoinositide 3 (PI3) kinase (PI3K) and mammalian target of rapamycin (mTOR) complex (mTORC)1 activation is necessary for lipid accumulation that can also be induced by insulin, whereas stimulation of the extracellular-signal-regulated kinase (ERK) pathway is surprisingly dispensable. Interestingly, insulin exposure, as short as 4 h, was sufficient for triggering the lipid accumulation, whereas much longer treatment with HRG was required for achieving similar cellular response. Further, activation patterns of ATP citrate lyase (ACLY), an enzyme playing a central role in linking glycolytic and lipogenic pathways, suggest that lipids accumulated within cells are produced de novo rather than absorbed from the environment. In the present study, we demonstrate that PI3K pathway regulates phenotypic changes in breast cancer cells, whereas signal intensity and duration is crucial for cell fate decisions and commitment. Our findings reveal that MCF-7 cell fate decisions are controlled by a network of positive and negative regulators of both signalling and metabolic pathways.


Assuntos
Neoplasias da Mama/metabolismo , Sistema de Sinalização das MAP Quinases , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Insulina/genética , Insulina/metabolismo , Células MCF-7 , Alvo Mecanístico do Complexo 2 de Rapamicina , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neuregulina-1/genética , Neuregulina-1/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
5.
FEBS J ; 282(4): 613-29, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25491268

RESUMO

Extracellular signal-regulated kinase (ERK) plays a central role in signal transduction networks and cell fate decisions. Sustained ERK activation induces cell differentiation, whereas transient ERK results in the proliferation of several types of cells. Sustained ERK activity stabilizes the proteins of early-response gene products. However, the effect of ERK activity duration on mRNA stability is unknown. We analyzed the quantitative relationship between the duration of four ERK activity kinetics and the mRNA expression profile in growth factor-treated cells. Time-course transcriptome analysis revealed that the cells with prolonged ERK activity generally showed sustained mRNA expression of late response genes but not early or mid genes. Selected late response genes decayed more rapidly in the presence of a specific ERK inhibitor than a general transcription inhibitor and the decay rate was not related to the number of AU-rich elements. Our results suggest that sustained ERK activity plays an important role in the lifespan of the mRNA encoded by late response genes, in addition to the previously demonstrated role in protein stabilization of early-response genes, including transcription factors regulating the transcription of mid and late genes. This double-positive regulation of ligand-induced genes, also termed feedforward regulation, is critical in cell fate decisions.


Assuntos
Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Estabilidade de RNA/genética , Butadienos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Dactinomicina/farmacologia , Receptores ErbB/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Células MCF-7 , Nitrilas/farmacologia , Estabilidade de RNA/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
6.
PLoS One ; 9(1): e87293, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24475266

RESUMO

Western blot data are widely used in quantitative applications such as statistical testing and mathematical modelling. To ensure accurate quantitation and comparability between experiments, Western blot replicates must be normalised, but it is unclear how the available methods affect statistical properties of the data. Here we evaluate three commonly used normalisation strategies: (i) by fixed normalisation point or control; (ii) by sum of all data points in a replicate; and (iii) by optimal alignment of the replicates. We consider how these different strategies affect the coefficient of variation (CV) and the results of hypothesis testing with the normalised data. Normalisation by fixed point tends to increase the mean CV of normalised data in a manner that naturally depends on the choice of the normalisation point. Thus, in the context of hypothesis testing, normalisation by fixed point reduces false positives and increases false negatives. Analysis of published experimental data shows that choosing normalisation points with low quantified intensities results in a high normalised data CV and should thus be avoided. Normalisation by sum or by optimal alignment redistributes the raw data uncertainty in a mean-dependent manner, reducing the CV of high intensity points and increasing the CV of low intensity points. This causes the effect of normalisations by sum or optimal alignment on hypothesis testing to depend on the mean of the data tested; for high intensity points, false positives are increased and false negatives are decreased, while for low intensity points, false positives are decreased and false negatives are increased. These results will aid users of Western blotting to choose a suitable normalisation strategy and also understand the implications of this normalisation for subsequent hypothesis testing.


Assuntos
Western Blotting/métodos , Projetos de Pesquisa , Interpretação Estatística de Dados , Eletroforese em Gel de Poliacrilamida , Humanos , Processamento de Imagem Assistida por Computador , Células MCF-7
7.
Biochem J ; 404(3): 487-97, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17355222

RESUMO

The Paks (p21-activated kinases) Pak1, Pak2 and Pak3 are among the most studied effectors of the Rho-family GTPases, Rac, Cdc42 (cell division cycle 42) and Chp (Cdc42 homologous protein). Pak kinases influence a variety of cellular functions, but the process of Pak down-regulation, following activation, is poorly understood. In the present study, we describe for the first time a negative-inhibitory loop generated by the small Rho-GTPases Cdc42 and Chp, resulting in Pak1 inhibition. Upon overexpression of Chp, we unexpectedly observed a T-cell migration phenotype consistent with Paks inhibition. In line with this observation, overexpression of either Chp or Cdc42 caused a marked reduction in the level of Pak1 protein in a number of different cell lines. Chp-induced degradation was accompanied by ubiquitination of Pak1, and was dependent on the proteasome. The susceptibility of Pak1 to Chp-induced degradation depended on its p21-binding domain, kinase activity and a number of Pak1 autophosphorylation sites, whereas the PIX- (Pak-interacting exchange factor) and Nck-binding sites were not required. Together, these results implicate Chp-induced kinase autophosphorylation in the degradation of Pak1. The N-terminal domain of Chp was found to be required for Chp-induced degradation, although not for Pak1 activation, suggesting that Chp provides a second function, distinct from kinase activation, to trigger Pak degradation. Collectively, our results demonstrate a novel mechanism of signal termination mediated by the Rho-family GTPases Chp and Cdc42, which results in ubiquitin-mediated degradation of one of their direct effectors, Pak1.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Movimento Celular/fisiologia , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica , Humanos , Proteínas de Neoplasias/genética , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Linfócitos T/citologia , Linfócitos T/fisiologia , Ubiquitina/metabolismo , Quinases Ativadas por p21 , Proteínas rho de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA