Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(46): 53395-53404, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37934853

RESUMO

This study investigates the use of chitosan hydrogel microspheres as a template for growing an extended network of MOF-type HKUST-1. Different drying methods (supercritical CO2, freeze-drying, and vacuum drying) were used to generate three-dimensional polysaccharide nanofibrils embedding MOF nanoclusters. The resulting HKUST-1@Chitosan beads exhibit uniform and stable loadings of HKUST-1 and were used for the adsorption of CO2, CH4, Xe, and Kr. The maximum adsorption capacity of CO2 was found to be 1.98 mmol·g-1 at 298 K and 1 bar, which is significantly higher than those of most MOF-based composite materials. Based on Henry's constants, thus-prepared HKUST-1@CS beads also exhibit fair selectivity for CO2 over CH4 and Xe over Kr, making them promising candidates for capture and separation applications.

2.
J Mater Sci ; 57(7): 4481-4503, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35125514

RESUMO

Organic pollutants have been a significant source of concern in recent years due to their facile dissemination and harmful effects. In this work, two different metal-organic frameworks (MOFs) were initially prepared by hydrothermal treatment, namely aluminum trimesate (MIL-100(Al)) and copper trimesate (HKUST-1). These materials were subsequently submitted to a post-synthetic modification step to grow titania nanoparticles on their surface. Anatase nanoparticles with sizes around 5 nm were successfully anchored on MIL-100(Al), and the concentration of TiO2 in this sample was about 68 wt.%. This is the first time that this composite (TiO2@MIL-100(Al)) is reported in the literature. It showed an improved photocatalytic activity, removing 90% of methylene blue (k app = 1.29 h-1), 55% of sodium diclofenac (k app = 0.21 h-1), and 62% of ibuprofen (k app = 0.37 h-1) after four hours of illumination with UV-A light. A significant concentration (14 µM) of reactive oxygen species (ROS) was detected for this composite. HKUST-1 showed a structural collapse during its post-synthetic modification, leading to a non-porous material and providing fewer sites for the heterogeneous nucleation of titania. This behavior led to a low concentration of rutile nanoparticles on HKUST-1 (9 wt.%). However, the obtained composite (TiO2@HKUST) also showed an improved photoactivity compared to HKUST-1, increasing the photodegradation rates evaluated for methylene blue (0.05 h-1 vs. 0.29 h-1), sodium diclofenac (negligible vs. 0.03 h-1), and ibuprofen (0.01 h-1 vs. 0.02 h-1). This work brings new insights concerning the preparation of photocatalysts by growing semiconductor nanoparticles on trimesate-based MOFs.

3.
ACS Omega ; 4(7): 12896-12904, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460416

RESUMO

Modeling of plutonium(IV) behavior during an accidental fire in a reprocessing plant was considered using various non-radioactive metallic surrogates. Among those elements, cerium(IV) was supposed to be a suitable candidate due to possible formation of a complex with TPB, but its extractability and stability have not been studied previously under representative plutonium uranium reduction extraction (PUREX) conditions. In this work, we investigated the chemical analogy between cerium(IV) and plutonium(IV) in this extractive process and combustion thereof. Distribution ratios are reported for acidities of 1-4 mol L-1 in equal volumes of nitric acid and a 30:70 mixture of tributylphosphate and hydrogenated tetrapropylene. The influences of light, temperature, and extraction time were studied by UV-vis spectroscopy. The results showed that cerium(IV) is extracted quantitatively but is reduced over time to cerium(III) in the organic mixture. Spectrophotometric investigations of this reaction kinetics revealed an apparent rate constant k of 0.021 ± 0.002 mol0.5 L0.5 min-1 at 298 K and an apparent fractional reaction order of 0.5. The activation energy of this reduction was found to be around 82 ± 2 kJ mol-1 by the Arrhenius plot method. The combustion of mono- and biphasic solutions prepared with a cerium(IV) concentration of 10 g L-1 revealed that the extracted complexes, Ce2O·6NO3·3TBP(org) or Ce4O4·8NO3·6TBP(org), are reduced during the combustion. Compositions of the resulting ashes and soot were analyzed and highlighted the presence of pyrophosphates and polycyclic aromatic hydrocarbons, with some traces of cerium. Ce(IV) is not suitable to represent Pu(IV) from a chemical point of view in HNO3/TBP-HTP solutions.

4.
Inorg Chem ; 54(5): 2235-42, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25668215

RESUMO

A series of thorium-based terephthalates have been solvothermaly synthesized in N,N-dimethylformamide (DMF) with different amounts of water and various temperatures (100-150 °C). Without the addition of water, the Th-H2bdc-DMF system gives rise to the formation of two phases, Th(bdc)2(DMF)2 (1) and Th6O4(OH)4(H2O)6(bdc)6·6DMF·12H2O (3) (bdc = 1,4-benzenedicarboxylate or terephthalate). Their structures are built up of isolated thorium centers ThO8(DMF)2 for (1) and the hexanuclear core Th6O4(OH)4(H2O)6 for (3). The latter adopts the UiO-66 metal-organic framework topology and exhibits a very high porosity for an actinides-based porous material (BET surface up to 730(6) m(2)·g(-1)). The synthesis of (3) is also favored upon adding water. However, for pure aqueous solutions or for a very low amount of water, a third solid Th(bdc)2 (2) crystallizes and contains thorium monomers ThO8. The main similitude with the parent system dedicated to tetravalent uranium concerns the possibility to stabilize the An6O8(H2O)6 core by terephthalate linkers and to reproduce An(bdc)2(DMF)2 for both actinides U(4+) and Th(4+). The thermal treatment of the latter shows a structural transition into the crystalline Th(bdc)2 (2) solid.

5.
Inorg Chem ; 49(21): 9852-62, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20923169

RESUMO

A new porous metal-organic framework (MOF)-type aluminum pyromellitate (MIL-121 or Al(OH)[H(2)btec]·(guest), (guest = H(2)O, H(4)btec = pyromellitic acid) has been isolated by using a high-throughput synthesis method under hydrothermal conditions. Its structure was determined from powder X-ray diffraction analysis using synchrotron radiation (Soleil, France) and exhibits a network closely related to that of the MIL-53 series. It is a three-dimensional (3D) framework containing one-dimensional (1D) channels delimited by infinite trans-connected aluminum-centered octahedra AlO(4)(OH)(2) linked through the pyromellitate ligand. Here the organic ligand acts as tetradendate linker via two of the carboxylate groups. The two others remain non-bonded in their protonated form, and this constitutes a rare case of the occurrence of both bonding and non-bonding organic functionalities of the MOF family. The non-coordinated -COOH groups points toward the channels to get them an open form configuration. Within the tunnels are located unreacted pyromellitic acid and water species, which are evacuated upon heating, and a porous MIL-121 phase is obtained with a Brunauer-Emmett-Teller (BET) surface area of 162 m(2) g(-1). MIL-121 has been characterized by IR, thermogravimetry (TG) analyses, and solid state NMR spectroscopy employing a couple of two-dimensional (2D) techniques such as (1)H-(1)H SQ-DQ BABA, (1)H-(1)H SQ-SQ RFDR, (27)Al{(1)H} CPHETCOR and (27)Al MQMAS.


Assuntos
Compostos de Alumínio/síntese química , Ácidos Carboxílicos/síntese química , Compostos de Alumínio/química , Ácidos Carboxílicos/química , Cristalografia por Raios X , Modelos Moleculares , Porosidade , Propriedades de Superfície
6.
J Am Chem Soc ; 128(31): 10223-30, 2006 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-16881652

RESUMO

A new aluminum trimesate Al12O(OH)18(H2O)3(Al2(OH)4)[btc]6.24H2O, denominated MIL-96, was synthesized under mild hydrothermal conditions (210 degrees C, 24 h) in the presence of 1,3,5-benzenetricarboxylic acid (trimesic acid or H3btc) in water. Hexagonal crystals, allowing a single-crystal XRD analysis, are grown from a mixture of trimethyl 1,3,5-benzenetricarboxylate (Me3btc), HF, and TEOS. The MIL-96 structure exhibits a three-dimensional (3D) framework containing isolated trinuclear mu3-oxo-bridged aluminum clusters and infinite chains of AlO4(OH)2 and AlO2(OH)4 octahedra forming a honeycomb lattice based on 18-membered rings. The two types of aluminum groups are connected to each other through the trimesate species, which induce corrugated chains of aluminum octahedra, linked via mu2-hydroxo bonds with the specific -cis-cis-trans- sequence. The 3D framework of MIL-96 reveals three types of cages. Two of them, centered at the special positions 0 0 0 and 2/3 1/3 1/4, have estimated pore volumes of 417 and 635 A3, respectively, and encapsulate free water molecules. The third one has a smaller pore volume and contains disordered aluminum octahedral species (Al(OH)6). The solid-state NMR characterization is consistent with crystal structure and elemental and thermal analyses. The four aluminum crystallographic sites are resolved by means of 27Al 3QMAS technique. This product is able to sorb both carbon dioxide and methane at room temperature (4.4 mmol.g(-1) for CO2 and 1.95 mmol.g(-1) for CH4 at 10 bar) and hydrogen at 77 K (1.91 wt % under 3 bar).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA