Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 11(4)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35453403

RESUMO

Among molecules that bridge environment, cell metabolism, and cell signaling, hydrogen peroxide (H2O2) recently appeared as an emerging but central player. Its level depends on cell metabolism and environment and was recently shown to play key roles during embryogenesis, contrasting with its long-established role in disease progression. We decided to explore whether the secreted morphogen Sonic hedgehog (Shh), known to be essential in a variety of biological processes ranging from embryonic development to adult tissue homeostasis and cancers, was part of these interactions. Here, we report that H2O2 levels control key steps of Shh delivery in cell culture: increased levels reduce primary secretion, stimulate endocytosis and accelerate delivery to recipient cells; in addition, physiological in vivo modulation of H2O2 levels changes Shh distribution and tissue patterning. Moreover, a feedback loop exists in which Shh trafficking controls H2O2 synthesis via a non-canonical BOC-Rac1 pathway, leading to cytoneme growth. Our findings reveal that Shh directly impacts its own distribution, thus providing a molecular explanation for the robustness of morphogenesis to both environmental insults and individual variability.

2.
J Cell Sci ; 135(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35107164

RESUMO

Reactive oxygen species (ROS), originally classified as toxic molecules, have attracted increasing interest given their actions in cell signaling. Hydrogen peroxide (H2O2), the major ROS produced by cells, acts as a second messenger to modify redox-sensitive proteins or lipids. After caudal fin amputation, tight spatiotemporal regulation of ROS is required first for wound healing and later to initiate the regenerative program. However, the mechanisms carrying out this sustained ROS production and their integration with signaling pathways remain poorly understood. We focused on the early dialog between H2O2 and Sonic hedgehog (Shh) during zebrafish fin regeneration. We demonstrate that H2O2 controls Shh expression and that Shh in turn regulates the H2O2 level via a canonical pathway. Moreover, the means of this tight reciprocal control change during the successive phases of the regenerative program. Dysregulation of the Hedgehog pathway has been implicated in several developmental syndromes, diabetes and cancer. These data support the existence of an early positive crosstalk between Shh and H2O2 that might be more generally involved in various processes paving the way to improve regenerative processes, particularly in vertebrates.


Assuntos
Proteínas Hedgehog , Peixe-Zebra , Animais , Proteínas Hedgehog/metabolismo , Peróxido de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio , Cicatrização , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
Antioxidants (Basel) ; 7(11)2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30404180

RESUMO

Reactive oxygen species (ROS), which were originally classified as exclusively deleterious compounds, have gained increasing interest in the recent years given their action as bona fide signalling molecules. The main target of ROS action is the reversible oxidation of cysteines, leading to the formation of disulfide bonds, which modulate protein conformation and activity. ROS, endowed with signalling properties, are mainly produced by NADPH oxidases (NOXs) at the plasma membrane, but their action also involves a complex machinery of multiple redox-sensitive protein families that differ in their subcellular localization and their activity. Given that the levels and distribution of ROS are highly dynamic, in part due to their limited stability, the development of various fluorescent ROS sensors, some of which are quantitative (ratiometric), represents a clear breakthrough in the field and have been adapted to both ex vivo and in vivo applications. The physiological implication of ROS signalling will be presented mainly in the frame of morphogenetic processes, embryogenesis, regeneration, and stem cell differentiation. Gain and loss of function, as well as pharmacological strategies, have demonstrated the wide but specific requirement of ROS signalling at multiple stages of these processes and its intricate relationship with other well-known signalling pathways.

4.
Chembiochem ; 19(12): 1232-1238, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29341391

RESUMO

The use of light to control the expression of genes and the activity of proteins is a rapidly expanding field. Whereas many of these approaches use fusion between a light-activable protein and the protein of interest to control the activity of the latter, it is also possible to control the activity of a protein by uncaging a specific ligand. In that context, controlling the activation of a protein fused to the modified estrogen receptor (ERT) by uncaging its ligand cyclofen-OH has emerged as a generic and versatile method to control the activation of proteins quantitatively, quickly, and locally in a live organism. We present that approach and its uses in a variety of physiological contexts.


Assuntos
Optogenética/métodos , Compostos Policíclicos/metabolismo , Receptores de Estrogênio/genética , Animais , Regulação da Expressão Gênica/efeitos da radiação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Ligantes , Compostos Policíclicos/química , Receptores de Estrogênio/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
5.
Sci Rep ; 7(1): 9195, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28835665

RESUMO

The zebrafish has become an increasingly popular and valuable cancer model over the past few decades. While most zebrafish cancer models are generated by expressing mammalian oncogenes under tissue-specific promoters, here we describe a method that allows for the precise optical control of oncogene expression in live zebrafish. We utilize this technique to transiently or constitutively activate a typical human oncogene, kRASG12V, in zebrafish embryos and investigate the developmental and tumorigenic phenotypes. We demonstrate the spatiotemporal control of oncogene expression in live zebrafish, and characterize the different tumorigenic probabilities when kRASG12V is expressed transiently or constitutively at different developmental stages. Moreover, we show that light can be used to activate oncogene expression in selected tissues and single cells without tissue-specific promoters. Our work presents a novel approach to initiate and study cancer in zebrafish, and the high spatiotemporal resolution of this method makes it a valuable tool for studying cancer initiation from single cells.


Assuntos
Transformação Celular Neoplásica , Neoplasias/etiologia , Neoplasias/patologia , Animais , Biomarcadores Tumorais , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Mutação , Oncogenes , Proteínas Proto-Oncogênicas p21(ras)/genética , Ativação Transcricional/efeitos da radiação , Peixe-Zebra
6.
Dev Biol ; 414(2): 133-41, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27158028

RESUMO

It is now becoming evident that hydrogen peroxide (H2O2), which is constantly produced by nearly all cells, contributes to bona fide physiological processes. However, little is known regarding the distribution and functions of H2O2 during embryonic development. To address this question, we used a dedicated genetic sensor and revealed a highly dynamic spatio-temporal pattern of H2O2 levels during zebrafish morphogenesis. The highest H2O2 levels are observed during somitogenesis and organogenesis, and these levels gradually decrease in the mature tissues. Biochemical and pharmacological approaches revealed that H2O2 distribution is mainly controlled by its enzymatic degradation. Here we show that H2O2 is enriched in different regions of the developing brain and demonstrate that it participates to axonal guidance. Retinal ganglion cell axonal projections are impaired upon H2O2 depletion and this defect is rescued by H2O2 or ectopic activation of the Hedgehog pathway. We further show that ex vivo, H2O2 directly modifies Hedgehog secretion. We propose that physiological levels of H2O2 regulate RGCs axonal growth through the modulation of Hedgehog pathway.


Assuntos
Orientação de Axônios/efeitos dos fármacos , Proteínas Hedgehog/fisiologia , Peróxido de Hidrogênio/metabolismo , Neurogênese/fisiologia , Células Ganglionares da Retina/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Orientação de Axônios/fisiologia , Axônios/metabolismo , Catalase/metabolismo , Cisteína/metabolismo , Células HeLa , Humanos , Proteínas Luminescentes/análise , Transporte Proteico/efeitos dos fármacos , Células Ganglionares da Retina/ultraestrutura , Transdução de Sinais/fisiologia , Superóxido Dismutase/metabolismo , Peixe-Zebra/metabolismo
7.
Purinergic Signal ; 10(4): 595-602, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25084769

RESUMO

A major issue in regenerative medicine is the control of progenitor cell mobilisation. Apoptosis has been reported as playing a role in cell plasticity, and it has been recently shown that apoptosis is necessary for organ and appendage regeneration. In this context, we explore its possible mode of action in progenitor cell recruitment during adult regeneration in zebrafish. Here, we show that apoptosis inhibition impairs blastema formation and nerve growth, both of which can be restored by exogenous adenosine acting through its A2B receptor. Moreover, adenosine increases the number of progenitor cells. Purinergic signalling is therefore an early and essential event in the pathway from lesion to blastema formation and provides new targets for manipulating cell plasticity in the adult.


Assuntos
Adenosina/metabolismo , Nadadeiras de Animais/fisiologia , Apoptose/fisiologia , Receptor A2B de Adenosina/metabolismo , Células-Tronco/metabolismo , Animais , Neurogênese/fisiologia , Regeneração , Peixe-Zebra
8.
Zebrafish ; 7(2): 199-204, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20441524

RESUMO

We implemented a noninvasive optical method for the fast control of Cre recombinase in single cells of a live zebrafish embryo. Optical uncaging of the caged precursor of a nonendogeneous steroid by one- or two-photon illumination was used to restore Cre activity of the CreER(T2) fusion protein in specific target cells. This method labels single cells irreversibly by inducing recombination in an appropriate reporter transgenic animal and thereby can achieve high spatiotemporal resolution in the control of gene expression. This technique could be used more generally to investigate important physiological processes (e.g., in embryogenesis, organ regeneration, or carcinogenesis) with high spatiotemporal resolution (single cell and 10-min scales).


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Integrases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Recombinação Genética/fisiologia , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Primers do DNA/genética , Proteínas de Choque Térmico HSP70/metabolismo , Microscopia de Fluorescência , Processos Fotoquímicos , Reação em Cadeia da Polimerase , Espectrometria de Fluorescência
9.
Chembiochem ; 11(5): 653-63, 2010 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-20187057

RESUMO

We have implemented a noninvasive optical method for the fast control of protein activity in a live zebrafish embryo. It relies on releasing a protein fused to a modified estrogen receptor ligand binding domain from its complex with cytoplasmic chaperones, upon the local photoactivation of a nonendogenous caged inducer. Molecular dynamics simulations were used to design cyclofen-OH, a photochemically stable inducer of the receptor specific for 4-hydroxy-tamoxifen (ER(T2)). Cyclofen-OH was easily synthesized in two steps with good yields. At submicromolar concentrations, it activates proteins fused to the ER(T2) receptor. This was shown in cultured cells and in zebrafish embryos through emission properties and subcellular localization of properly engineered fluorescent proteins. Cyclofen-OH was successfully caged with various photolabile protecting groups. One particular caged compound was efficient in photoinducing the nuclear translocation of fluorescent proteins either globally (with 365 nm UV illumination) or locally (with a focused UV laser or with two-photon illumination at 750 nm). The present method for photocontrol of protein activity could be used more generally to investigate important physiological processes (e.g., in embryogenesis, organ regeneration and carcinogenesis) with high spatiotemporal resolution.


Assuntos
Receptores de Estrogênio/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Peixe-Zebra/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Ciclofenil/química , Embrião não Mamífero/metabolismo , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/metabolismo , Chaperonas Moleculares/metabolismo , Simulação de Dinâmica Molecular , Processos Fotoquímicos , Fótons , Receptores de Estrogênio/genética , Proteínas Recombinantes de Fusão/análise , Tamoxifeno/análogos & derivados , Tamoxifeno/química , Tamoxifeno/farmacologia , Raios Ultravioleta , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
10.
Development ; 129(17): 4065-74, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12163409

RESUMO

Transgenic mice expressing the homeobox gene Hoxa5 under the control of Hoxb2 regulatory elements present a growth arrest during weeks two and three of postnatal development, resulting in proportionate dwarfism. These mice present a liver phenotype illustrated by a 12-fold increase in liver insulin-like growth factor binding protein 1 (IGFBP1) mRNA and a 50% decrease in liver insulin-like growth factor 1 (IGF1) mRNA correlated with a 50% decrease in circulating IGF1. We show that the Hoxa5 transgene is expressed in the liver of these mice, leading to an overexpression of total (endogenous plus transgene) Hoxa5 mRNA in this tissue. We have used several cell lines to investigate a possible physiological interaction of Hoxa5 with the main regulator of IGFBP1 promoter activity, the Forkhead box transcription factor FKHR. In HepG2 cells, Hoxa5 has little effect by itself but inhibits the FKHR-dependent activation of the IGFBP1 promoter. In HuF cells, Hoxa5 cooperates with FKHR to dramatically enhance IGFBP1 promoter activity. This context-dependent physiological interaction probably corresponds to the existence of a direct interaction between Hoxa5 and FKHR and FoxA2/HNF3beta, as demonstrated by pull-down experiments achieved either in vitro or after cellular co-expression. In conclusion, we propose that the impaired growth observed in this transgenic line relates to a liver phenotype best explained by a direct interaction between Hoxa5 and liver-specific Forkhead box transcription factors, in particular FKHR but also Foxa2/HNF3beta. Because Hoxa5 and homeogenes of the same paralog group are normally expressed in the liver, the present results raise the possibility that homeoproteins, in addition to their established role during early development, regulate systemic physiological functions.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Nanismo/genética , Proteínas de Homeodomínio/fisiologia , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Sistema Nervoso/embriologia , Fosfoproteínas/fisiologia , Fatores de Transcrição/metabolismo , Animais , Feminino , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead , Fator 3-beta Nuclear de Hepatócito , Proteínas de Homeodomínio/genética , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/genética , Células Tumorais Cultivadas , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA