Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 369: 363-375, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554770

RESUMO

The lymphatic system is active in several processes that regulate human diseases, among which cancer progression stands out. Thus, various drug delivery systems have been investigated to promote lymphatic drug targeting for cancer therapy; mainly, nanosized particles in the 10-150 nm range quickly achieve lymphatic vessels after an interstitial administration. Herein, a strategy to boost the lymphotropic delivery of Rose Bengal (RB), a hydrosoluble chemotherapeutic, is proposed, and it is based on the loading into Transfersomes (RBTF) and their intradermal deposition in vivo by microneedles. RBTF of 96.27 ± 13.96 nm (PDI = 0.29 ± 0.02) were prepared by a green reverse-phase evaporation technique, and they showed an RB encapsulation efficiency of 98.54 ± 0.09%. In vitro, RBTF remained physically stable under physiological conditions and avoided the release of RB. In vivo, intravenous injection of RBTF prolonged RB half-life of 50 min in healthy rats compared to RB intravenous injection; the RB half-life in rat body was further increased after intradermal injection reaching 24 h, regardless of the formulation used. Regarding lymphatic targeting, RBTF administered intravenously provided an RB accumulation in the lymph nodes of 12.3 ± 0.14 ng/mL after 2 h, whereas no RB accumulation was observed after RB intravenous injection. Intradermally administered RBTF resulted in the highest RB amount detected in lymph nodes after 2 h from the injection (84.2 ± 25.10 ng/mL), which was even visible to the naked eye based on the pink colouration of the drug. In the case of intradermally administered RB, RB in lymph node was detected only at 24 h (13.3 ± 1.41 ng/mL). In conclusion, RBTF proved an efficient carrier for RB delivery, enhancing its pharmacokinetics and promoting lymph-targeted delivery. Thus, RBTF represents a promising nanomedicine product for potentially facing the medical need for novel strategies for cancer therapy.


Assuntos
Sistemas de Liberação de Medicamentos , Agulhas , Rosa Bengala , Animais , Rosa Bengala/administração & dosagem , Rosa Bengala/farmacocinética , Injeções Intradérmicas , Masculino , Ratos Sprague-Dawley , Linfonodos/metabolismo , Ratos , Microinjeções , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/farmacocinética
2.
Int J Pharm ; 627: 122217, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36155790

RESUMO

Melanoma remains a global concern, but current therapies present critical limitations pointing out the urgent need for novel strategies. Among these, the cutaneous delivery of drugs selectively damaging cancer cells is highly attractive. Rose Bengal (RB) is a dye exhibiting selective cytotoxicity towards melanoma, but the high water solubility and low permeability hinder its therapeutic potential. We previously developed RB-loaded transfersomes (RBTF) to mediate the RB dermal delivery; however, a platform efficiently delivering RBTF in the deepest strata is essential for a successful therapeutic activity. In this regard, dissolving microneedles release the encapsulated cargo up to the dermis, painlessly piercing the outmost skin layers. Therefore, herein we developed and characterised a trilayer dissolving microneedle array (RBTF-TDMNs) loading RBTF to maximise RBTF intradermal delivery in melanoma management. RBTF-TDMNs were proven strong enough to pierce excised porcine skin and rapidly dissolve and deposit RBTF intradermally while maintaining their physicochemical properties. Also, 3D visualisation of the system itself and while penetrating the skin was performed by multi-photon microscopy. Finally, a dermatokinetic study showed that RBTF-TDMNs offered unique delivery efficiency advantages compared to RBTF dispersion and free drug-loaded TDMNs. The proposed RBTF-TDMNs represent a valuable potential adjuvant tool for the topical management of melanoma.


Assuntos
Melanoma , Neoplasias Cutâneas , Suínos , Animais , Administração Cutânea , Rosa Bengala , Melanoma/tratamento farmacológico , Agulhas , Neoplasias Cutâneas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Pele , Polímeros , Água , Melanoma Maligno Cutâneo
3.
J Pharm Biomed Anal ; 213: 114698, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35259714

RESUMO

The antiretroviral agents rilpivirine (RPV) and cabotegravir (CAB) are approved as a combined treatment regimen against human immunodeficiency virus (HIV). To fully understand the biodistribution of these agents and determine their concentration levels in various parts of the body, a simple, selective and sensitive bioanalytical method is essential. In the present study, a high performance liquid chromatography method with mass spectrometry detection (HPLC-MS) was developed for simultaneous detection and quantification of RPV and CAB in various biological matrices. These included plasma, skin, lymph nodes, vaginal tissue, liver, kidneys and spleen, harvested from female Sprague Dawley rats. The suitability of the developed method for each matrix was validated based on the guidelines of the International Council for Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) on bioanalytical method validation. Analytes were extracted from biological samples employing a simple one-step protein precipitation method using acetonitrile. Samples were analysed using an Apex Scientific Inertsil ODS-3 column (4.6 mm × 250 mm, 5 µm particle size), maintained at 40 °C, on a HPLC system coupled with a single quadrupole MS detector. RPV was detected at a mass-to-charge ratio (m/z) of 367.4 and CAB at 406.3. Separation was achieved using isocratic elution at 0.3 mL/min with a mixture of acetonitrile and 0.1% (v/v) trifluoroacetic acid in water (81:19, v/v) as the mobile phase. The run time was set at 13 min. The presented method was selective, sensitive, accurate and precise for detection and quantification of RPV and CAB in all matrices. The developed and validated bioanalytical method was successfully employed for in vivo samples with both drugs simultaneously.


Assuntos
Antirretrovirais , Rilpivirina , Animais , Antirretrovirais/análise , Antirretrovirais/sangue , Cromatografia Líquida de Alta Pressão/métodos , Dicetopiperazinas , Feminino , Preparações Farmacêuticas , Piridonas , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Rilpivirina/análise , Rilpivirina/sangue , Espectrometria de Massas em Tandem/métodos , Distribuição Tecidual
4.
Adv Drug Deliv Rev ; 173: 331-348, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33831475

RESUMO

Despite the existence of a variety of contraceptive products for women, as well as decades of research into the prevention and treatment of human immunodeficiency virus (HIV), there is still a globally unmet need for easily accessible, acceptable, and affordable products to protect women's sexual and reproductive health. Microarray patches (MAPs) are a novel platform being developed for the delivery of hormonal contraception and antiretroviral drugs. MAPs provide enhanced drug delivery to the systemic circulation via the transdermal route when compared to transdermal patches, oral and injectable formulations. These minimally invasive patches can be self-administered by the user, reducing the burden on health care personnel. Since MAPs represent needle-free drug delivery, no sharps waste is generated after application, thereby eliminating possible MAP reuse and risk of needle-stick injuries. This review discusses the administration of contraceptive and antiretroviral drugs using MAPs, their acceptability by end-users, and the future perspective of the field.


Assuntos
Fármacos Anti-HIV/farmacologia , Anticoncepcionais Femininos/farmacologia , Infecções por HIV/prevenção & controle , HIV/efeitos dos fármacos , Análise em Microsséries , Sistemas de Liberação de Medicamentos , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA