Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 178: 24-40, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38458512

RESUMO

Bone metastasis primarily occurs when breast, prostate, or lung cancers disseminate tumoral cells into bone tissue, leading to a range of complications in skeletal tissues and, in severe cases, paralysis resulting from spinal cord compression. Unfortunately, our understanding of pathophysiological mechanisms is incomplete and the translation of bone metastasis research into the clinic has been slow, mainly due to the lack of credible ex vivo and in vivo models to study the disease progression. Development of reliable and rational models to study how tumor cells become circulating cells and then invade and sequentially colonize the bone are in great need. Advances in tissue engineering technologies offers reliable 3D tissue alternatives which answer relevant research questions towards the understanding of cancer evolution and key functional properties of metastasis progression as well as prognosis of therapeutic approach. Here we performed an overview of cellular mechanisms involved in bone metastasis including a short summary of normal bone physiology and metastasis initiation and progression. Also, we comprehensively summarized current advances and methodologies in fabrication of reliable bone tumor models based on state-of-the-art printing technologies which recapitulate structural and biological features of native tissue. STATEMENT OF SIGNIFICANCE: This review provides a comprehensive summary of the collective findings in relation to various printed bone metastasis models utilized for investigating specific bone metastasis diseases, related characteristic functions and chemotherapeutic drug screening. These tumoral models are comprehensively evaluated and compared, in terms of their ability to recapitulate physiological metastasis microenvironment. Various biomaterials (natural and synthetic polymers and ceramic based substrates) and printing strategies and design architecture of models used for printing of 3D bone metastasis models are discussed here. This review clearly out-lines current challenges and prospects for 3D printing technologies in bone metastasis research by focusing on the required perspective models for clinical application of these technologies in chemotherapeutic drug screening.


Assuntos
Bioimpressão , Neoplasias Ósseas , Humanos , Biomimética , Engenharia Tecidual , Materiais Biocompatíveis , Impressão Tridimensional , Bioimpressão/métodos , Alicerces Teciduais/química , Microambiente Tumoral
2.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070750

RESUMO

The immune system is a fine modulator of the tumor biology supporting or inhibiting its progression, growth, invasion and conveys the pharmacological treatment effect. Tumors, on their side, have developed escaping mechanisms from the immune system action ranging from the direct secretion of biochemical signals to an indirect reaction, in which the cellular actors of the tumor microenvironment (TME) collaborate to mechanically condition the extracellular matrix (ECM) making it inhospitable to immune cells. TME is composed of several cell lines besides cancer cells, including tumor-associated macrophages, cancer-associated fibroblasts, CD4+ and CD8+ lymphocytes, and innate immunity cells. These populations interface with each other to prepare a conservative response, capable of evading the defense mechanisms implemented by the host's immune system. The presence or absence, in particular, of cytotoxic CD8+ cells in the vicinity of the main tumor mass, is able to predict, respectively, the success or failure of drug therapy. Among various mechanisms of immunescaping, in this study, we characterized the modulation of the phenotypic profile of CD4+ and CD8+ cells in resting and activated states, in response to the mechanical pressure exerted by a three-dimensional in vitro system, able to recapitulate the rheological and stiffness properties of the tumor ECM.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Matriz Extracelular/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Evasão Tumoral , Microambiente Tumoral/imunologia , 5'-Nucleotidase/genética , 5'-Nucleotidase/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/patologia , Técnicas de Cultura de Células , Módulo de Elasticidade , Matriz Extracelular/química , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Humanos , Hidrogéis/química , Interferon gama/genética , Interferon gama/imunologia , Ativação Linfocitária , Mecanotransdução Celular , Modelos Biológicos , NF-kappa B/genética , NF-kappa B/imunologia , Fenótipo , Cultura Primária de Células , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Reologia , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/imunologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/imunologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/genética , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA