Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 102: 103100, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33812230

RESUMO

Analysis and quantification of residual, unrepaired DNA double-strand breaks by detecting damage-associated γH2AX or 53BP1 foci is a promising approach to evaluate radiosensitivity or radiosensitization in tumor cells. Manual foci quantification by eye is well-established but unsatisfactory due to inconsistent foci numbers between different observers, lack of information about foci size and intensity and the time-consuming scoring process. Therefore, automated foci counting is an important goal. Several software solutions for automated foci counting in separately acquired fluorescence microscopy images have been established. The AKLIDES NUK technology by Medipan combines automated microscopy and image processing/ counting, enabling affordable high throughput foci analysis as a routine application. Using this machine, automated foci counting is well established for lymphocytes but has not yet been reported for adherent tumor cells with their irregularly shaped nuclei and heterogeneous foci textures. Here we aimed to use the AKLIDES NUK system for adherent tumor cells growing in clusters. We identified cell separation as a critical step to ensure fast and reliable automated nuclei detection. We validated our protocol for the fully automated quantification of (i) the IR-dose dependent increase and (ii) the ATM as well as PARP inhibitor-induced radiosensitization. Collectively, with this protocol the AKLIDES NUK system facilitates cost effective, fast and high throughput quantitative fluorescence microscopic analysis of DNA damage induced foci such as γH2AX and 53BP1 in adherent tumor cells.


Assuntos
Separação Celular , Quebras de DNA de Cadeia Dupla , Histonas/análise , Testes de Mutagenicidade/métodos , Neoplasias/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/análise , Técnicas de Cultura de Células , DNA de Neoplasias/metabolismo , DNA de Neoplasias/efeitos da radiação , Histonas/metabolismo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Células PC-3 , Tolerância a Radiação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
2.
Sci Rep ; 8(1): 3947, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500400

RESUMO

Here we report that PTEN contributes to DNA double-strand break (DSB) repair via homologous recombination (HR), as evidenced by (i) inhibition of HR in a reporter plasmid assay, (ii) enhanced sensitivity to mitomycin-C or olaparib and (iii) reduced RAD51 loading at IR-induced DSBs upon PTEN knockdown. No association was observed between PTEN-status and RAD51 expression either in-vitro or in-vivo in a tissue microarray of 1500 PTEN-deficient prostate cancer (PC) samples. PTEN depletion and sustained activation of AKT sequestered CHK1 in the cytoplasm, thus impairing the G2/M-checkpoint after irradiation. Consistently, AKT inhibition recovered the G2/M-checkpoint and restored HR efficiency in PTEN-depleted cells. We show that, although PTEN loss correlates with a worse prognosis, it may predict for improved response of PC patients to radiotherapy. Further, we provide evidence for the use of PTEN as a biomarker for predicting the response to PARP inhibitors as radiosensitizing agents in prostate cancer. Collectively, these data implicate PTEN in maintaining genomic stability by delaying G2/M-phase progression of damaged cells, thus allowing time for DSB repair by HR. Furthermore, we identify PTEN-status in PC as a putative predictor of (i) radiotherapy response and (ii) response to treatment with PARP inhibitor alone or combined with radiotherapy.


Assuntos
Divisão Celular , Fase G2 , Recombinação Homóloga , PTEN Fosfo-Hidrolase/genética , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias da Próstata/terapia , Quinase 1 do Ponto de Checagem/genética , Terapia Combinada , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/radioterapia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA