Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
EJNMMI Res ; 8(1): 91, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30203138

RESUMO

BACKGROUND: Glioma grading with dynamic 18F-FET PET (0-40 min p.i.) is typically performed by analysing the mean time-activity curve of the entire tumour or a suspicious area within a heterogeneous tumour. This work aimed to ensure a reader-independent glioma characterisation and identification of aggressive sub-volumes by performing a voxel-based analysis with diagnostically relevant kinetic and static 18F-FET PET parameters. One hundred sixty-two patients with a newly diagnosed glioma classified according to histologic and molecular genetic properties were evaluated. The biological tumour volume (BTV) was segmented in static 20-40 min p.i. 18F-FET PET images using the established threshold of 1.6 × background activity. For each enclosed voxel, the time-to-peak (TTP), the late slope (Slope15-40), and the tumour-to-background ratios (TBR5-15, TBR20-40) obtained from 5 to 15 min p.i. and 20 to 40 min p.i. images were determined. The percentage portion of these values within the BTV was evaluated with percentage volume fractions (PVFs) and cumulated percentage volume histograms (PVHs). The ability to differentiate histologic and molecular genetic classes was assessed and compared to volume-of-interest (VOI)-based parameters. RESULTS: Aggressive WHO grades III and IV and IDH-wildtype gliomas were dominated by a high proportion of voxels with an early peak, negative slope, and high TBR, whereby the PVHs with TTP < 20 min p.i., Slope15-40 < 0 SUV/h, and TBR5-15 and TBR20-40 > 2 yielded the most significant differences between glioma grades. We found significant differences of the parameters between WHO grades and IDH mutation status, where the effect size was predominantly higher for voxel-based PVHs compared to the corresponding VOI-based parameters. A low overlap of BTV sub-volumes defined by TTP < 20 min p.i. and negative Slope15-40 with TBR5-15 > 2- and TBR20-40 > 2-defined hotspots was observed. CONCLUSIONS: The presented approach applying voxel-wise analysis of dynamic 18F-FET PET enables an enhanced characterisation of gliomas and might potentially provide a fast identification of aggressive sub-volumes within the BTV. Parametric 3D 18F-FET PET information as investigated in this study has the potential to guide individual therapy instrumentation and may be included in future biopsy studies.

3.
EJNMMI Res ; 8(1): 76, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30076556

RESUMO

BACKGROUND: The bone marrow (BM) is a main organ at risk in Lu-177-PSMA-617 therapy of prostate cancer and Lu-177-Octreotate therapy of neuroendocrine tumours. BM dosimetry is challenging and time-consuming, as different sequential quantitative measurements must be combined. The BM absorbed dose from the remainder of the body (ROB) can be determined from sequential whole-body planar (WB-P) imaging, while quantitative Lu-177-SPECT allows for more robust tumour and organ absorbed doses. The aim was to investigate a time-efficient and patient-friendly hybrid protocol (HP) for the ROB absorbed dose to the BM. It combines three abdominal quantitative SPECT (QSPECT) scans with a single WB-P acquisition and was compared with a reference protocol (RP) using sequential WB-P in combination with sequential QSPECT images. We investigated five patients receiving 7.4 GBq Lu-177-Octreotate and five patients treated with 3.7 GBq Lu-177-PSMA-617. Each patient had WB-P and abdominal SPECT acquisitions 24 (+ CT), 48, and 72 h post-injection. Blood samples were drawn 30 min, 80 min, 24 h, 48 h, and 72 h post-injection. BM absorbed doses from the ROB were estimated from sequential WB-P images (RP), via a mono-exponential fit and mass-scaled organ-level S values. For the HP, a mono-exponential fit on the QSPECT data was scaled with the activity of one WB-P image acquired either 24, 48, or 72 h post-injection (HP24, HP48, HP72). Total BM absorbed doses were determined as a sum of ROB, blood, major organ, and tumour contributions. RESULTS: Compared with the RP and for Lu-177-Octreotate therapy, median differences of the total BM absorbed doses were 13% (9-17%), 8% (4-15%), and 1% (0-5%) for the HP24, HP48, and HP72, respectively. For Lu-177-PSMA-617 therapy, total BM absorbed doses deviated 10% (2-20%), 3% (0-6%), and 2% (0-6%). CONCLUSION: For both Lu-177-Octreotate and Lu-177-PSMA-617 therapy, BM dosimetry via sequential QSPECT imaging and a single WB-P acquisition is feasible, if this WB-P image is acquired at a late time point (48 or 72 h post-injection). The reliability of the HP can be well accepted considering the uncertainties of quantitative Lu-177 imaging and BM dosimetry using standardised organ-level S values.

4.
J Med Chem ; 60(16): 6897-6910, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28696690

RESUMO

The proto-oncogenes NTRK1/2/3 encode the tropomyosin receptor kinases TrkA/B/C which play pivotal roles in neurobiology and cancer. We describe herein the discovery of [11C]-(R)-3 ([11C]-(R)-IPMICF16), a first-in-class positron emission tomography (PET) TrkB/C-targeting radiolabeled kinase inhibitor lead. Relying on extensive human kinome vetting, we show that (R)-3 is the most potent and most selective TrkB/C inhibitor characterized to date. It is demonstrated that [11C]-(R)-3 readily crosses the blood-brain barrier (BBB) in rodents and selectively binds to TrkB/C receptors in vivo, as evidenced by entrectinib blocking studies. Substantial TrkB/C-specific binding in human brain tissue is observed in vitro, with specific reduction in the hippocampus of Alzheimer's disease (AD) versus healthy brains. We additionally provide preliminary translational data regarding the brain disposition of [11C]-(R)-3 in primates including first-in-human assessment. These results illustrate for the first time the use of a kinome-wide selective radioactive chemical probe for endogenous kinase PET neuroimaging in human.


Assuntos
Imidazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridazinas/farmacologia , Compostos Radiofarmacêuticos/farmacologia , Receptor trkB/antagonistas & inibidores , Receptor trkC/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Animais , Benzamidas/farmacologia , Barreira Hematoencefálica/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Carbono , Cães , Humanos , Imidazóis/síntese química , Imidazóis/farmacocinética , Indazóis/farmacologia , Macaca mulatta , Células Madin Darby de Rim Canino , Glicoproteínas de Membrana/antagonistas & inibidores , Camundongos , Neuroimagem , Tomografia por Emissão de Pósitrons , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacocinética , Piridazinas/síntese química , Piridazinas/farmacocinética , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Ratos Sprague-Dawley , Receptor trkA/antagonistas & inibidores , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA