Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(38): 33963-33984, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36188331

RESUMO

Addressing the growing burden of cancer and the shortcomings of chemotherapy in cancer treatment are the current research goals. Research to overcome the limitations of curcumin and to improve its anticancer activity via its heterocycle-fused monocarbonyl analogues (MACs) has immense potential. In this study, 32 asymmetric MACs fused with 1-aryl-1H-pyrazole (7a-10h) were synthesized and characterized to develop new curcumin analogues. Subsequently, via initial screening for cytotoxic activity, nine compounds exhibited potential growth inhibition against MDA-MB-231 (IC50 2.43-7.84 µM) and HepG2 (IC50 4.98-14.65 µM), in which seven compounds showing higher selectivities on two cancer cell lines than the noncancerous LLC-PK1 were selected for cell-free in vitro screening for effects on microtubule assembly activity. Among those, compounds 7d, 7h, and 10c showed effective inhibitions of microtubule assembly at 20.0 µM (40.76-52.03%), indicating that they could act as microtubule-destabilizing agents. From the screening results, three most potential compounds, 7d, 7h, and 10c, were selected for further evaluation of cellular effects on breast cancer MDA-MB-231 cells. The apoptosis-inducing study indicated that these three compounds could cause morphological changes at 1.0 µM and could enhance caspase-3 activity (1.33-1.57 times) at 10.0 µM in MDA-MB-231 cells, confirming their apoptosis-inducing activities. Additionally, in cell cycle analysis, compounds 7d and 7h at 2.5 µM and 10c at 5.0 µM also arrested MDA-MB-231 cells in the G2/M phase. Finally, the results from in silico studies revealed that the predicted absorption, distribution, metabolism, excretion, and the toxicity (ADMET) profile of the most potent MACs might have several advantages in addition to potential disadvantages, and compound 7h could bind into (ΔG -10.08 kcal·mol-1) and access wider space at the colchicine-binding site (CBS) than that of colchicine or nocodazole via molecular docking studies. In conclusion, our study serves as a basis for the design of promising synthetic compounds as anticancer agents in the future.

2.
RSC Adv ; 13(1): 399-420, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36605630

RESUMO

Compounds containing benzimidazole moiety occupy privileged chemical space for discovering new bioactive substances. In continuation of our recent work, 69 benzimidazole derivatives were designed and synthesized with good to excellent yields of 46-99% using efficient synthesis protocol i.e. sodium metabisulfite catalyzed condensation of aromatic aldehydes with o-phenylenediamines to form 2-arylbenzimidazole derivatives followed by N-alkylation by conventional heating or microwave irradiation for diversification. Potent antibacterial compounds against MSSA and MRSA were discovered such as benzimidazole compounds 3k (2-(4-nitrophenyl), N-benzyl), 3l (2-(4-chlorophenyl), N-(4-chlorobenzyl)), 4c (2-(4-chlorophenyl), 6-methyl, N-benzyl), 4g (2-(4-nitrophenyl), 6-methyl, N-benzyl), and 4j (2-(4-nitrophenyl), 6-methyl, N-(4-chlorobenzyl)) with MIC of 4-16 µg mL-1. In addition, compound 4c showed good antimicrobial activities (MIC = 16 µg mL-1) against the bacteria strains Escherichia coli and Streptococcus faecalis. Moreover, compounds 3k, 3l, 4c, 4g, and 4j have been found to kill HepG2, MDA-MB-231, MCF7, RMS, and C26 cancer cells with low µM IC50 (2.39-10.95). These compounds showed comparable drug-like properties as ciprofloxacin, fluconazole, and paclitaxel in computational ADMET profiling. Finally, docking studies were used to assess potential protein targets responsible for their biological activities. Especially, we found that DHFR is a promising target both in silico and in vitro with compound 4c having IC50 of 2.35 µM.

3.
J Control Release ; 310: 74-81, 2019 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-31415830

RESUMO

Oligo-peptides, including monomeric amino acids, have received much attention as bioactive molecules and drugs. One of the biggest problems of these compounds, however, is their very short bioavailability due to instant metabolism and rapid excretion. To solve this problem, we newly designed a poly(ethylene glycol) (PEG)-block-polypeptide self-assembling based drug for the treatment of acute liver injury. Here, PEG-block-poly(L-Ornithine) (PEG-b-POrn) was synthesized via a ring opening polymerization, and a nano-sized polyion self-assembling complex (NanoOrn) was prepared by simply mixing polycationic PEG-b-POrn with polyanionic chondroitin sulfate. The obtained NanoOrn was quite stable under high ionic strength and different pH conditions and NanoOrn exhibited extremely low toxicity in vitro and in vivo as compared to the original PEG-b-POrn. As compared to monomeric L-ornithine, administration of NanoOrn to mice significantly improved bioavailability of liberated ornithine, especially in the liver. Interestingly, NanoOrn treatment in acetaminophen (APAP)-induced acute liver injury mice remarkably suppressed blood ammonia levels and liver injury markers, resulting in more effective improvement of liver damage compared to monomeric ornithine via activation of ornithine transcarbomylase. These results show that the self-assembling polypeptide NanoOrn may provide a new concept and promising therapeutics as nanomedicines.


Assuntos
Amônia/sangue , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Hiperamonemia/prevenção & controle , Nanopartículas/química , Acetaminofen/toxicidade , Animais , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/complicações , Sulfatos de Condroitina/química , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Células Endoteliais/efeitos dos fármacos , Hiperamonemia/etiologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Nanopartículas/administração & dosagem , Ornitina/administração & dosagem , Ornitina/uso terapêutico , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA