Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 227, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775843

RESUMO

Proteins delivered by endocytosis or autophagy to lysosomes are degraded by exo- and endoproteases. In humans 15 lysosomal cathepsins (CTS) act as important physiological regulators. The cysteine proteases CTSB and CTSL and the aspartic protease CTSD are the most abundant and functional important lysosomal proteinases. Whereas their general functions in proteolysis in the lysosome, their individual substrate, cleavage specificity, and their possible sequential action on substrate proteins have been previously studied, their functional redundancy is still poorly understood. To address a possible common role of highly expressed and functional important CTS proteases, we generated CTSB-, CTSD-, CTSL-, and CTSBDL-triple deficient (KO) human neuroblastoma-derived SH-SY5Y cells and CTSB-, CTSD-, CTSL-, CTSZ and CTSBDLZ-quadruple deficient (KO) HeLa cells. These cells with a combined cathepsin deficiency exhibited enlarged lysosomes and accumulated lipofuscin-like storage material. The lack of the three (SH-SY5Y) or four (HeLa) major CTSs caused an impaired autophagic flux and reduced degradation of endocytosed albumin. Proteome analyses of parental and CTS-depleted cells revealed an enrichment of cleaved peptides, lysosome/autophagy-associated proteins, and potentially endocytosed membrane proteins like the amyloid precursor protein (APP), which can be subject to endocytic degradation. Amino- and carboxyterminal APP fragments accumulated in the multiple CTS-deficient cells, suggesting that multiple CTS-mediated cleavage events regularly process APP. In summary, our analyses support the idea that different lysosomal cathepsins act in concert, have at least partially and functionally redundant substrates, regulate protein degradation in autophagy, and control cellular proteostasis, as exemplified by their involvement in the degradation of APP fragments.


Assuntos
Autofagia , Catepsinas , Lisossomos , Proteólise , Humanos , Lisossomos/metabolismo , Catepsinas/metabolismo , Catepsinas/genética , Células HeLa , Endocitose , Catepsina L/metabolismo , Catepsina L/genética , Linhagem Celular Tumoral , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética
2.
Cell Rep ; 43(4): 114105, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38619967

RESUMO

Natural killer (NK) cells are primary defenders against cancer precursors, but cancer cells can persist by evading immune surveillance. To investigate the genetic mechanisms underlying this evasion, we perform a genome-wide CRISPR screen using B lymphoblastoid cells. SPPL3, a peptidase that cleaves glycosyltransferases in the Golgi, emerges as a top hit facilitating evasion from NK cytotoxicity. SPPL3-deleted cells accumulate glycosyltransferases and complex N-glycans, disrupting not only binding of ligands to NK receptors but also binding of rituximab, a CD20 antibody approved for treating B cell cancers. Notably, inhibiting N-glycan maturation restores receptor binding and sensitivity to NK cells. A secondary CRISPR screen in SPPL3-deficient cells identifies B3GNT2, a transferase-mediating poly-LacNAc extension, as crucial for resistance. Mass spectrometry confirms enrichment of N-glycans bearing poly-LacNAc upon SPPL3 loss. Collectively, our study shows the essential role of SPPL3 and poly-LacNAc in cancer immune evasion, suggesting a promising target for cancer treatment.


Assuntos
Células Matadoras Naturais , Polissacarídeos , Humanos , Polissacarídeos/metabolismo , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/imunologia , Amino Açúcares/metabolismo , Genômica/métodos , Rituximab/farmacologia , Rituximab/metabolismo , Linhagem Celular Tumoral
3.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119489, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37271223

RESUMO

The cytokine interleukin-6 (IL-6) has considerable pro-inflammatory properties and is a driver of many physiological and pathophysiological processes. Cellular responses to IL-6 are mediated by membrane-bound or soluble forms of the IL-6 receptor (IL-6R) complexed with the signal-transducing subunit gp130. While expression of the membrane-bound IL-6R is restricted to selected cell types, soluble IL-6R (sIL-6R) enables gp130 engagement on all cells, a process termed IL-6 trans-signalling and considered to be pro-inflammatory. sIL-6R is predominantly generated through proteolytic processing by the metalloproteinase ADAM17. ADAM17 also liberates ligands of the epidermal growth factor receptor (EGFR), which is a prerequisite for EGFR activation and results in stimulation of proliferative signals. Hyperactivation of EGFR mostly due to activating mutations drives cancer development. Here, we reveal an important link between overshooting EGFR signalling and the IL-6 trans-signalling pathway. In epithelial cells, EGFR activity induces not only IL-6 expression but also the proteolytic release of sIL-6R from the cell membrane by increasing ADAM17 surface activity. We find that this derives from the transcriptional upregulation of iRhom2, a crucial regulator of ADAM17 trafficking and activation, upon EGFR engagement, which results in increased surface localization of ADAM17. Also, phosphorylation of the EGFR-downstream mediator ERK mediates ADAM17 activity via interaction with iRhom2. In sum, our study reveals an unforeseen interplay between EGFR activation and IL-6 trans-signalling, which has been shown to be fundamental in inflammation and cancer.


Assuntos
Proteína ADAM17 , Interleucina-6 , Transdução de Sinais , Receptor gp130 de Citocina/genética , Células Epiteliais/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Transdução de Sinais/genética , Humanos
4.
Exp Cell Res ; 425(2): 113541, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36894052

RESUMO

SAMD9 and SAMD9L encode homologous interferon-induced genes that can inhibit cellular translation as well as proliferation and can restrict viral replication. Gain-of-function (GoF) variants in these ancient, yet rapidly evolving genes are associated with life-threatening disease in humans. Potentially driving population sequence diversity, several viruses have evolved host range factors that antagonize cell-intrinsic SAMD9/SAMD9L function. Here, to gain insights into the molecular regulation of SAMD9/SAMD9L activity and to explore the prospect of directly counteracting the activity of pathogenic variants, we examined whether dysregulated activity of pathogenic SAMD9/SAMD9L variants can be modulated by the poxviral host range factors M062, C7 and K1 in a co-expression system. We established that the virally encoded proteins retain interactions with select SAMD9/SAMD9L missense GoF variants. Furthermore, expression of M062, C7 and K1 could principally ameliorate the translation-inhibiting and growth-restrictive effect instigated by ectopically expressed SAMD9/SAMD9L GoF variants, yet with differences in potency. K1 displayed the greatest potency and almost completely restored cellular proliferation and translation in cells co-expressing SAMD9/SAMD9L GoF variants. However, neither of the viral proteins tested could antagonize a truncated SAMD9L variant associated with severe autoinflammation. Our study demonstrates that pathogenic SAMD9/SAMD9L missense variants can principally be targeted through molecular interactions, opening an opportunity for therapeutic modulation of their activity. Moreover, it provides novel insights into the complex intramolecular regulation of SAMD9/SAMD9L activity.


Assuntos
Especificidade de Hospedeiro , Proteínas Supressoras de Tumor , Humanos , Proteínas Supressoras de Tumor/genética , Proteínas Virais/genética , Fatores de Transcrição , Replicação Viral/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
5.
Cell Mol Life Sci ; 79(3): 185, 2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35279766

RESUMO

Golgi membrane proteins such as glycosyltransferases and other glycan-modifying enzymes are key to glycosylation of proteins and lipids. Secretion of soluble Golgi enzymes that are released from their membrane anchor by endoprotease activity is a wide-spread yet largely unexplored phenomenon. The intramembrane protease SPPL3 can specifically cleave select Golgi enzymes, enabling their secretion and concomitantly altering global cellular glycosylation, yet the entire range of Golgi enzymes cleaved by SPPL3 under physiological conditions remains to be defined. Here, we established isogenic SPPL3-deficient HEK293 and HeLa cell lines and applied N-terminomics to identify substrates cleaved by SPPL3 and released into cell culture supernatants. With high confidence, our study identifies more than 20 substrates of SPPL3, including entirely novel substrates. Notably, our N-terminome analyses provide a comprehensive list of SPPL3 cleavage sites demonstrating that SPPL3-mediated shedding of Golgi enzymes occurs through intramembrane proteolysis. Through the use of chimeric glycosyltransferase constructs we show that transmembrane domains can determine cleavage by SPPL3. Using our cleavage site data, we surveyed public proteome data and found that SPPL3 cleavage products are present in human blood. We also generated HEK293 knock-in cells expressing the active site mutant D271A from the endogenous SPPL3 locus. Immunoblot analyses revealed that secretion of select novel substrates such as the key mucin-type O-glycosylation enzyme GALNT2 is dependent on endogenous SPPL3 protease activity. In sum, our study expands the spectrum of known physiological substrates of SPPL3 corroborating its significant role in Golgi enzyme turnover and secretion as well as in the regulation of global glycosylation pathways.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Complexo de Golgi/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , Proteólise , Proteoma/análise , Ácido Aspártico Endopeptidases/deficiência , Ácido Aspártico Endopeptidases/genética , Domínio Catalítico/genética , Edição de Genes , Células HEK293 , Células HeLa , Humanos , Mutagênese Sítio-Dirigida , N-Acetilgalactosaminiltransferases/genética , Proteômica/métodos , RNA Guia de Cinetoplastídeos/metabolismo , Especificidade por Substrato , Polipeptídeo N-Acetilgalactosaminiltransferase
6.
J Exp Med ; 219(1)2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34919140

RESUMO

Metastasis is the major cause of death in cancer patients. Circulating tumor cells need to migrate through the endothelial layer of blood vessels to escape the hostile circulation and establish metastases at distant organ sites. Here, we identified the membrane-bound metalloprotease ADAM17 on endothelial cells as a key driver of metastasis. We show that TNFR1-dependent tumor cell-induced endothelial cell death, tumor cell extravasation, and subsequent metastatic seeding is dependent on the activity of endothelial ADAM17. Moreover, we reveal that ADAM17-mediated TNFR1 ectodomain shedding and subsequent processing by the γ-secretase complex is required for the induction of TNF-induced necroptosis. Consequently, genetic ablation of ADAM17 in endothelial cells as well as short-term pharmacological inhibition of ADAM17 prevents long-term metastases formation in the lung. Thus, our data identified ADAM17 as a novel essential regulator of necroptosis and as a new promising target for antimetastatic and advanced-stage cancer therapies.


Assuntos
Proteína ADAM17/antagonistas & inibidores , Células Endoteliais/metabolismo , Necroptose , Neoplasias/etiologia , Neoplasias/patologia , Animais , Antineoplásicos/farmacologia , Biomarcadores , Biomarcadores Tumorais , Comunicação Celular , Morte Celular , Suscetibilidade a Doenças/imunologia , Humanos , Necroptose/genética , Invasividade Neoplásica , Metástase Neoplásica , Inoculação de Neoplasia , Neoplasias/metabolismo , Neoplasias/terapia , Proteólise , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Fator de Necrose Tumoral alfa/metabolismo
7.
Front Immunol ; 11: 1154, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582217

RESUMO

Autosomal recessive mutations in genes required for cytotoxicity are causative of a life-threatening, early-onset hyperinflammatory syndrome termed familial hemophagocytic lymphohistiocytosis (FHL). Mutations in UNC13D cause FHL type 3. UNC13D encodes Munc13-4, a member of the Unc13 protein family which control SNARE complex formation and vesicle fusion. We have previously identified FHL3-associated mutations in the first intron of UNC13D which control transcription from an alternative transcriptional start site. Using isoform specific antibodies, we demonstrate that this alternative Munc13-4 isoform with a unique N-terminus is preferentially expressed in human lymphocytes and platelets, as compared to the conventional isoform that was mostly expressed in monocytes and neutrophils. The distinct N-terminal of the two isoforms did not impact on Munc13-4 localization or trafficking to the immunological synapse of cytotoxic T cells. Moreover, ectopic expression of both isoforms efficiently restored exocytosis by FHL3 patient-derived Munc13-4 deficient T cells. Thus, we demonstrate that the conventional and alternative Munc13-4 isoforms have different expression pattern in hematopoietic cell subsets, but display similar localization and contribution to T cell exocytosis. The use of an alternative transcriptional starting site (TSS) in lymphocytes and platelets could be selected for increasing the overall levels of Munc13-4 expression for efficient secretory granule release.


Assuntos
Plaquetas/metabolismo , Linfócitos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Plaquetas/imunologia , Células Cultivadas , Humanos , Linfócitos/imunologia , Linfo-Histiocitose Hemofagocítica/genética , Linfo-Histiocitose Hemofagocítica/imunologia , Linfo-Histiocitose Hemofagocítica/metabolismo , Mutação , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
9.
Haematologica ; 103(3): 427-437, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29217778

RESUMO

Familial myelodysplastic syndromes arise from haploinsufficiency of genes involved in hematopoiesis and are primarily associated with early-onset disease. Here we describe a familial syndrome in seven patients from four unrelated pedigrees presenting with myelodysplastic syndrome and loss of chromosome 7/7q. Their median age at diagnosis was 2.1 years (range, 1-42). All patients presented with thrombocytopenia with or without additional cytopenias and a hypocellular marrow without an increase of blasts. Genomic studies identified constitutional mutations (p.H880Q, p.R986H, p.R986C and p.V1512M) in the SAMD9L gene on 7q21, with decreased allele frequency in hematopoiesis. The non-random loss of mutated SAMD9L alleles was attained via monosomy 7, deletion 7q, UPD7q, or acquired truncating SAMD9L variants p.R1188X and p.S1317RfsX21. Incomplete penetrance was noted in 30% (3/10) of mutation carriers. Long-term observation revealed divergent outcomes with either progression to leukemia and/or accumulation of driver mutations (n=2), persistent monosomy 7 (n=4), and transient monosomy 7 followed by spontaneous recovery with SAMD9L-wildtype UPD7q (n=2). Dysmorphic features or neurological symptoms were absent in our patients, pointing to the notion that myelodysplasia with monosomy 7 can be a sole manifestation of SAMD9L disease. Collectively, our results define a new subtype of familial myelodysplastic syndrome and provide an explanation for the phenomenon of transient monosomy 7. Registered at: www.clinicaltrials.gov; #NCT00047268.


Assuntos
Deleção Cromossômica , Síndromes Mielodisplásicas/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Adulto , Criança , Pré-Escolar , Cromossomos Humanos Par 7 , Saúde da Família , Feminino , Humanos , Lactente , Masculino , Linhagem , Penetrância , Trombocitopenia , Adulto Jovem
10.
Blood ; 129(16): 2266-2279, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28202457

RESUMO

Several monogenic causes of familial myelodysplastic syndrome (MDS) have recently been identified. We studied 2 families with cytopenia, predisposition to MDS with chromosome 7 aberrations, immunodeficiency, and progressive cerebellar dysfunction. Genetic studies uncovered heterozygous missense mutations in SAMD9L, a tumor suppressor gene located on chromosome arm 7q. Consistent with a gain-of-function effect, ectopic expression of the 2 identified SAMD9L mutants decreased cell proliferation relative to wild-type protein. Of the 10 individuals identified who were heterozygous for either SAMD9L mutation, 3 developed MDS upon loss of the mutated SAMD9L allele following intracellular infections associated with myeloid, B-, and natural killer (NK)-cell deficiency. Five other individuals, 3 with spontaneously resolved cytopenic episodes in infancy, harbored hematopoietic revertant mosaicism by uniparental disomy of 7q, with loss of the mutated allele or additional in cisSAMD9L truncating mutations. Examination of 1 individual indicated that somatic reversions were postnatally selected. Somatic mutations were tracked to CD34+ hematopoietic progenitor cell populations, being further enriched in B and NK cells. Stimulation of these cell types with interferon (IFN)-α or IFN-γ induced SAMD9L expression. Clinically, revertant mosaicism was associated with milder disease, yet neurological manifestations persisted in 3 individuals. Two carriers also harbored a rare, in trans germ line SAMD9L missense loss-of-function variant, potentially counteracting the SAMD9L mutation. Our results demonstrate that gain-of-function mutations in the tumor suppressor SAMD9L cause cytopenia, immunodeficiency, variable neurological presentation, and predisposition to MDS with -7/del(7q), whereas hematopoietic revertant mosaicism commonly ameliorated clinical manifestations. The findings suggest a role for SAMD9L in regulating IFN-driven, demand-adapted hematopoiesis.


Assuntos
Disfunção Cognitiva/diagnóstico , Síndromes de Imunodeficiência/diagnóstico , Mutação , Síndromes Mielodisplásicas/diagnóstico , Pancitopenia/diagnóstico , Proteínas Supressoras de Tumor/genética , Adulto , Alelos , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/patologia , Proliferação de Células , Criança , Cromossomos Humanos Par 7/química , Disfunção Cognitiva/complicações , Disfunção Cognitiva/genética , Disfunção Cognitiva/imunologia , Feminino , Expressão Gênica , Hematopoese/imunologia , Heterozigoto , Humanos , Síndromes de Imunodeficiência/complicações , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Imunofenotipagem , Interferon Tipo I/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Masculino , Pessoa de Meia-Idade , Mosaicismo , Síndromes Mielodisplásicas/complicações , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/imunologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/patologia , Pancitopenia/complicações , Pancitopenia/genética , Pancitopenia/imunologia , Linhagem , Proteínas Supressoras de Tumor/metabolismo
11.
Clin Immunol ; 177: 29-42, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-26592356

RESUMO

Natural killer (NK) cells are innate immune cytotoxic effector cells well known for their role in antiviral immunity and tumor immunosurveillance. In parts, this knowledge stems from rare inherited immunodeficiency disorders in humans that abrogate NK cell function leading to immune impairments, most notably associated with a high susceptibility to viral infections. Phenotypically, these disorders range from deficiencies selectively affecting NK cells to complex general immune defects that affect NK cells but also other immune cell subsets. Moreover, deficiencies may be associated with reduced NK cell numbers or rather impair specific NK cell effector functions. In recent years, genetic defects underlying the various NK cell deficiencies have been uncovered and have triggered investigative efforts to decipher the molecular mechanisms underlying these disorders. Here we review the associations between inherited human diseases and NK cell development as well as function, with a particular focus on defects in NK cell exocytosis and cytotoxicity. Furthermore we outline how reports of diverse genetic defects have shaped our understanding of NK cell biology.


Assuntos
Síndromes de Imunodeficiência/imunologia , Células Matadoras Naturais/imunologia , Animais , Variação Genética , Humanos , Síndromes de Imunodeficiência/genética
12.
J Biol Chem ; 291(1): 318-33, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26574544

RESUMO

Numerous membrane-bound proteins undergo regulated intramembrane proteolysis. Regulated intramembrane proteolysis is initiated by shedding, and the remaining stubs are further processed by intramembrane-cleaving proteases (I-CLiPs). Neuregulin 1 type III (NRG1 type III) is a major physiological substrate of ß-secretase (ß-site amyloid precursor protein-cleaving enzyme 1 (BACE1)). BACE1-mediated cleavage is required to allow signaling of NRG1 type III. Because of the hairpin nature of NRG1 type III, two membrane-bound stubs with a type 1 and a type 2 orientation are generated by proteolytic processing. We demonstrate that these stubs are substrates for three I-CLiPs. The type 1-oriented stub is further cleaved by γ-secretase at an ϵ-like site five amino acids N-terminal to the C-terminal membrane anchor and at a γ-like site in the middle of the transmembrane domain. The ϵ-cleavage site is only one amino acid N-terminal to a Val/Leu substitution associated with schizophrenia. The mutation reduces generation of the NRG1 type III ß-peptide as well as reverses signaling. Moreover, it affects the cleavage precision of γ-secretase at the γ-site similar to certain Alzheimer disease-associated mutations within the amyloid precursor protein. The type 2-oriented membrane-retained stub of NRG1 type III is further processed by signal peptide peptidase-like proteases SPPL2a and SPPL2b. Expression of catalytically inactive aspartate mutations as well as treatment with 2,2'-(2-oxo-1,3-propanediyl)bis[(phenylmethoxy)carbonyl]-l-leucyl-l-leucinamide ketone inhibits formation of N-terminal intracellular domains and the corresponding secreted C-peptide. Thus, NRG1 type III is the first protein substrate that is not only cleaved by multiple sheddases but is also processed by three different I-CLiPs.


Assuntos
Membrana Celular/enzimologia , Neuregulina-1/metabolismo , Peptídeo Hidrolases/metabolismo , Proteólise , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Peptídeo C/metabolismo , Células HEK293 , Humanos , Dados de Sequência Molecular , Mutação/genética , Neurônios/metabolismo , Peptídeos/química , Polimorfismo de Nucleotídeo Único/genética , Estrutura Terciária de Proteína , Ratos , Esquizofrenia/genética , Especificidade por Substrato
13.
EMBO J ; 33(24): 2890-905, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25354954

RESUMO

Protein N-glycosylation is involved in a variety of physiological and pathophysiological processes such as autoimmunity, tumour progression and metastasis. Signal peptide peptidase-like 3 (SPPL3) is an intramembrane-cleaving aspartyl protease of the GxGD type. Its physiological function, however, has remained enigmatic, since presently no physiological substrates have been identified. We demonstrate that SPPL3 alters the pattern of cellular N-glycosylation by triggering the proteolytic release of active site-containing ectodomains of glycosidases and glycosyltransferases such as N-acetylglucosaminyltransferase V, ß-1,3 N-acetylglucosaminyltransferase 1 and ß-1,4 galactosyltransferase 1. Cleavage of these enzymes leads to a reduction in their cellular activity. In line with that, reduced expression of SPPL3 results in a hyperglycosylation phenotype, whereas elevated SPPL3 expression causes hypoglycosylation. Thus, SPPL3 plays a central role in an evolutionary highly conserved post-translational process in eukaryotes.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Regulação da Expressão Gênica , Glicosídeo Hidrolases/metabolismo , Glicosiltransferases/metabolismo , Polissacarídeos/metabolismo , Glicosilação , Humanos , Processamento de Proteína Pós-Traducional
14.
Exp Cell Res ; 320(2): 290-301, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24291222

RESUMO

Fas ligand (FasL) is a death factor of the tumor necrosis factor superfamily. Like other members of this family of type II transmembrane proteins, FasL is subject to ectodomain shedding by a disintegrin and metalloproteinases (ADAMs) liberating soluble FasL and leaving membrane-integral N-terminal fragments (NTFs). These NTFs are further processed by intramembrane proteolysis through signal peptide peptidase-like 2a (SPPL2a), releasing intracellular domains (ICDs) which might translocate to the nucleus to regulate transcription. Previous work established that the proline-rich domain within the cytosolic N-terminus of FasL is required for protein-protein interactions with different Src homology 3 (SH3) or WW domain proteins. Distinct binding partners regulate FasL storage and surface appearance or are involved in other aspects of FasL biology. Given the large number of FasL interactors, we asked whether proteolytically processed FasL fragments associate with the same or distinct sets of SH3 domain proteins. To address this, we performed co-precipitation experiments using a monoclonal antibody directed against the FasL N-terminus for subsequent protein detection of full length FasL and NTFs/ICDs in Western blots. We demonstrate that members of the sorting nexin (SNX) family bind full length FasL and its N-terminal fragments whereas members of the Pombe Cdc15 homology (PCH) protein family bind full length FasL, but fail to associate with processed FasL. Thus, we provide first evidence that full length FasL and FasL fragments display selectivity regarding their association with intracellular binding partners. The differential binding most likely governs the fate and function of the intracellular FasL fragments.


Assuntos
Proteína Ligante Fas/química , Proteína Ligante Fas/metabolismo , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas/fisiologia , Proteólise , Animais , Células Cultivadas , Células HEK293 , Humanos , Células Jurkat , Células K562 , Camundongos , Camundongos Endogâmicos BALB C , Fragmentos de Peptídeos/química , Ligação Proteica/fisiologia , Mapeamento de Interação de Proteínas , Especificidade por Substrato
15.
J Biol Chem ; 287(52): 43401-9, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23132852

RESUMO

Signal peptide peptidase (SPP), its homologs, the SPP-like proteases SPPL2a/b/c and SPPL3, as well as presenilin, the catalytic subunit of the γ-secretase complex, are intramembrane-cleaving aspartyl proteases of the GxGD type. In this study, we identified the 18-kDa leader peptide (LP18) of the foamy virus envelope protein (FVenv) as a new substrate for intramembrane proteolysis by human SPPL3 and SPPL2a/b. In contrast to SPPL2a/b and γ-secretase, which require substrates with an ectodomain shorter than 60 amino acids for efficient intramembrane proteolysis, SPPL3 cleaves mutant FVenv lacking the proprotein convertase cleavage site necessary for the prior shedding. Moreover, the cleavage product of FVenv generated by SPPL3 serves as a new substrate for consecutive intramembrane cleavage by SPPL2a/b. Thus, human SPPL3 is the first GxGD-type aspartyl protease shown to be capable of acting like a sheddase, similar to members of the rhomboid family, which belong to the class of intramembrane-cleaving serine proteases.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Produtos do Gene env/metabolismo , Sinais Direcionadores de Proteínas , Proteólise , Vírus Espumoso dos Símios/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/genética , Produtos do Gene env/genética , Células HEK293 , Humanos , Vírus Espumoso dos Símios/genética
16.
Cell Mol Life Sci ; 67(24): 4233-48, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20559678

RESUMO

The surface-expressed transmembrane CX3C chemokine ligand 1 (CX3CL1/fractalkine) induces firm adhesion of leukocytes expressing its receptor CX3CR1. After shedding by the disintegrins and metalloproteinases (ADAM) 10 and 17, CX3CL1 also acts as soluble leukocyte chemoattractant. Here, we demonstrate that transmembrane CX3CL1 expressed on both endothelial and epithelial cells induces leukocyte transmigration. To investigate the underlying mechanism, we generated CX3CR1 variants lacking the intracellular aspartate-arginine-tyrosine (DRY) motif or the intracellular C-terminus which led to a defect in intracellular calcium response and impaired ligand uptake, respectively. While both variants effectively mediated firm cell adhesion, they failed to induce transmigration and rather mediated retention of leukocytes on the CX3CL1-expressing cell layer. Targeting of ADAM10 led to increased adhesion but reduced transmigration in response to transmembrane CX3CL1, while transmigration towards soluble CX3CL1 was not affected. Thus, transmembrane CX3CL1 mediates leukocyte transmigration via the DRY motif and C-terminus of CX3CR1 and the activity of ADAM10.


Assuntos
Quimiocina CX3CL1/metabolismo , Leucócitos/fisiologia , Migração Transendotelial e Transepitelial/fisiologia , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAM10 , Proteína ADAM17 , Sequência de Aminoácidos , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Receptor 1 de Quimiocina CX3C , Sinalização do Cálcio/fisiologia , Linhagem Celular Tumoral , Células Cultivadas , Quimiocina CX3CL1/genética , Quimiotaxia/fisiologia , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Humanos , Leucócitos/citologia , Ligantes , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Receptores de Quimiocinas/química , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo
17.
Protein Sci ; 19(4): 658-69, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20082308

RESUMO

Nck is a ubiquitously expressed, primarily cytosolic adapter protein consisting of one SH2 domain and three SH3 domains. It links receptor and nonreceptor tyrosine kinases to actin cytoskeleton reorganizing proteins. In T lymphocytes, Nck is a crucial component of signaling pathways for T cell activation and effector function. It recruits actin remodeling proteins to T cell receptor (TCR)-associated activation clusters and thereby initiates changes in cell polarity and morphology. Moreover, Nck is crucial for the TCR-induced mobilization of secretory vesicles to the cytotoxic immunological synapse. To identify the interactome of Nck in human T cells, we performed a systematic screen for interaction partners in untreated or pervanadate-treated cells. We used GST fusion proteins containing full length Nck, the combined SH3 domains or the individual SH3 and SH2 domains to precipitate putative Nck interactors from cellular lysates. Protein bands were excised from gels, processed by tryptic in-gel digestion and analyzed by mass spectrometry. Using this approach, we confirmed previously established interactions (e.g., with Slp76, CD3 epsilon, WASP, and WIPF1) and identified several novel putative Nck-binding proteins. We subsequently verified the SH2 domain binding to the actin-binding protein HIP55 and to FYB/ADAP, and the SH3-mediated binding to the nuclear proteins SFPQ/NONO. Using laser scanning microscopy, we provide new evidence for a nuclear localization of Nck in human T cells. Our data highlight the fundamental role of Nck in the TCR-to-cytoskeleton crosstalk and point to yet unknown nuclear functions of Nck also in T lymphocytes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Oncogênicas/metabolismo , Linfócitos T/metabolismo , Domínios de Homologia de src , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Sítios de Ligação , Humanos , Células Jurkat , Microscopia Confocal , Proteínas Oncogênicas/química , Proteínas Oncogênicas/genética , Receptores de Antígenos de Linfócitos T/metabolismo
18.
BMC Immunol ; 10: 53, 2009 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-19807924

RESUMO

BACKGROUND: Fas ligand is a cytotoxic effector molecule of T and NK cells which is characterized by an intracellular N-terminal polyproline region that serves as a docking site for SH3 and WW domain proteins. Several previously described Fas ligand-interacting SH3 domain proteins turned out to be crucial for the regulation of storage, expression and function of the death factor. Recent observations, however, indicate that Fas ligand is also subject to posttranslational modifications including shedding and intramembrane proteolysis. This results in the generation of short intracellular fragments that might either be degraded or translocate to the nucleus to influence transcription. So far, protein-protein interactions that specifically regulate the fate of the intracellular fragments have not been identified. RESULTS: In order to further define the SH3 domain interactome of the intracellular region of Fas ligand, we now screened a human SH3 domain phage display library. In addition to known SH3 domains mediating binding to the Fas ligand proline-rich domain, we were able to identify a number of additional SH3 domains that might also associate with FasL. Potential functional implications of the new binding proteins for the death factor's biology are discussed. For Tec kinases and sorting nexins, the observed interactions were verified in cellular systems by pulldown experiments. CONCLUSION: We provide an extended list of putative Fas ligand interaction partners, confirming previously identified interactions, but also introducing several novel SH3 domain proteins that might be important regulators of Fas ligand function.


Assuntos
Núcleo Celular/metabolismo , Proteína Ligante Fas/metabolismo , Fragmentos de Peptídeos/metabolismo , Biblioteca de Peptídeos , Proteínas Recombinantes de Fusão/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas de Transporte/metabolismo , Linhagem Celular , Clonagem Molecular , Proteína Ligante Fas/genética , Humanos , Fragmentos de Peptídeos/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Recombinantes de Fusão/genética , Nexinas de Classificação , Proteínas de Transporte Vesicular/metabolismo , Domínios de Homologia de src/genética
19.
Cell Commun Signal ; 6: 11, 2008 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-19114018

RESUMO

The TNF superfamily member Fas ligand acts as a prototypic death factor. Due to its ability to induce apoptosis in Fas (APO-1, CD95) expressing cells, Fas ligand participates in essential effector functions of the immune system. It is involved in natural killer cell- and T cell-mediated cytotoxicity, the establishment of immune privilege, and in termination of immune responses by induction of activation-induced cell death. In addition, Fas ligand-positive tumours may evade immune surveillance by killing Fas-positive tumour-infiltrating cells. Given these strong cytotoxic capabilities of Fas ligand, it is obvious that its function has to be strictly regulated to avoid uncontrolled damage. In hematopoietic cells, the death factor is stored in secretory lysosomes and is mobilised to the immunological synapse only upon activation. The selective sorting to and the release from this specific lysosomal compartment requires interactions of the Fas ligand cytosolic moiety, which mediates binding to various adapter proteins involved in trafficking and cytoskeletal reorganisation. In addition, Fas ligand surface expression is further regulated by posttranslational ectodomain shedding and subsequent regulated intramembrane proteolysis, releasing a soluble ectodomain cytokine into the extracellular space and an N-terminal fragment with a potential role in intracellular signalling processes. Moreover, other posttranslational modifications of the cytosolic domain, including phosphorylation and ubiquitylation, have been described to affect various aspects of Fas ligand biology. Since FasL is regarded as a potential target for immunotherapy, the further characterisation of its biological regulation and function will be of great importance for the development and evaluation of future therapeutic strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA