Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cancer Res Clin Oncol ; 145(6): 1449-1460, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30968255

RESUMO

BACKGROUND: A growing body of evidence suggests that exercise training has beneficial effects in cancer patients. The aim of the present study was to investigate the molecular basis underlying these beneficial effects in skeletal muscle from cancer patients. METHODS: We investigated expression of selected proteins involved in cellular processes known to orchestrate adaptation to exercise training by western blot. Skeletal muscle biopsies were sampled from ten cancer patients before and after 4-7 weeks of ongoing chemotherapy, and subsequently after 10 weeks of continued chemotherapy in combination with exercise training. Biopsies from ten healthy matched subjects served as reference. RESULTS: The expression of the insulin-regulated glucose transporter, GLUT4, increased during chemotherapy and continued to increase during exercise training. A similar trend was observed for ACC, a key enzyme in the biosynthesis and oxidation of fatty acids, but we did not observe any changes in other regulators of substrate metabolism (AMPK and PDH) or mitochondrial proteins (Cyt-C, COX-IV, SDHA, and VDAC). Markers of proteasomal proteolysis (MURF1 and ATROGIN-1) decreased during chemotherapy, but did not change further during chemotherapy combined with exercise training. A similar pattern was observed for autophagy-related proteins such as ATG5, p62, and pULK1 Ser757, but not ULK1 and LC3BII/LC3BI. Phosphorylation of FOXO3a at Ser318/321 did not change during chemotherapy, but decreased during exercise training. This could suggest that FOXO3a-mediated transcriptional regulation of MURF1 and ATROGIN-1 serves as a mechanism by which exercise training maintains proteolytic systems in skeletal muscle in cancer patients. Phosphorylation of proteins that regulate protein synthesis (mTOR at Ser2448 and 4EBP1 at Thr37/46) increased during chemotherapy and leveled off during exercise training. Finally, chemotherapy tended to increase the number of satellite cells in type 1 fibers, without any further change during chemotherapy and exercise training. Conversely, the number of satellite cells in type 2 fibers did not change during chemotherapy, but increased during chemotherapy combined with exercise training. CONCLUSIONS: Molecular signaling cascades involved in exercise training are disturbed during cancer and chemotherapy, and exercise training may prevent further disruption of these pathways. TRIAL REGISTRATION: The study was approved by the local Scientific Ethics Committee of the Central Denmark Region (Project ID: M-2014-15-14; date of approval: 01/27/2014) and the Danish Data Protection Agency (case number 2007-58-0010; date of approval: 01/28/2015). The trial was registered at http//www.clinicaltrials.gov (registration number: NCT02192216; date of registration 07/17-2014).


Assuntos
Exercício Físico , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiopatologia , Neoplasias/fisiopatologia , Adulto , Feminino , Transportador de Glucose Tipo 4/biossíntese , Humanos , Pessoa de Meia-Idade , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/terapia , Complexo de Endopeptidases do Proteassoma/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/patologia , Ubiquitina/metabolismo
2.
J Clin Endocrinol Metab ; 102(11): 4031-4040, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28945869

RESUMO

Context: Short-term glucocorticoid exposure increases serum insulinlike growth factor I (IGF-I) concentrations but antagonizes IGF-I tissue signaling. The underlying mechanisms remain unknown. Objective: To identify at which levels glucocorticoid inhibits IGF-I signaling. Design and Methods: Nineteen healthy males received prednisolone (37.5 mg/d) and placebo for 5 days in a randomized, double-blinded, placebo-controlled crossover study. Serum was collected on days 1, 3, and 5, and abdominal skin suction blister fluid (SBF; ~interstitial fluid) was taken on day 5 (n = 9) together with muscle biopsy specimens (n = 19). The ability of serum and SBF to activate the IGF-I receptor (IGF-IR) (bioactive IGF) and its downstream signaling proteins was assessed using IGF-IR-transfected cells. Results: Prednisolone increased IGF-I concentrations and bioactive IGF in serum (P ≤ 0.001) but not in SBF, which, compared with serum, contained less bioactive IGF (~28%) after prednisolone (P < 0.05). This observation was unexplained by SBF concentrations of IGFs and IGF-binding proteins (IGFBPs) 1 to 4. However, following prednisolone treatment, SBF contained less IGFBP-4 fragments (P < 0.05) generated by pregnancy-associated plasma protein A (PAPP-A). Concomitantly, prednisolone increased SBF levels of stanniocalcin 2 (STC2) (P = 0.02) compared with serum. STC2 blocks PAPP-A from cleaving IGFBP-4. Finally, prednisolone suppressed post-IGF-IR signaling pathways at the level of insulin receptor substrate 1 (P < 0.05) but did not change skeletal muscle IGF-IR, IGF-I, or STC2 messenger RNA. Conclusion: Prednisolone increased IGF-I concentrations and IGF bioactivity in serum but not in tissue fluid. The latter may relate to a STC2-mediated inhibition of PAPP-A in tissue fluids. Furthermore, prednisolone induced post-IGF-IR resistance. Thus, glucocorticoid may exert distinct, compartment-specific effects on IGF action.


Assuntos
Músculos/efeitos dos fármacos , Músculos/metabolismo , Prednisolona/farmacologia , Receptor IGF Tipo 1/metabolismo , Adulto , Análise Química do Sangue , Estudos Cross-Over , Método Duplo-Cego , Líquido Extracelular/metabolismo , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/sangue , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Masculino , Placebos , Receptor IGF Tipo 1/sangue , Transdução de Sinais/efeitos dos fármacos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA