Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 8(5)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36719758

RESUMO

Vascular calcification (VC) is concomitant with atherosclerosis, yet it remains uncertain why rupture-prone high-risk plaques do not typically show extensive calcification. Intraplaque hemorrhage (IPH) deposits erythrocyte-derived cholesterol, enlarging the necrotic core and promoting high-risk plaque development. Pro-atherogenic CD163+ alternative macrophages engulf hemoglobin:haptoglobin (HH) complexes at IPH sites. However, their role in VC has never been examined to our knowledge. Here we show, in human arteries, the distribution of CD163+ macrophages correlated inversely with VC. In vitro experiments using vascular smooth muscle cells (VSMCs) cultured with HH-exposed human macrophage - M(Hb) - supernatant reduced calcification, while arteries from ApoE-/- CD163-/- mice showed greater VC. M(Hb) supernatant-exposed VSMCs showed activated NF-κB, while blocking NF-κB attenuated the anticalcific effect of M(Hb) on VSMCs. CD163+ macrophages altered VC through NF-κB-induced transcription of hyaluronan synthase (HAS), an enzyme that catalyzes the formation of the extracellular matrix glycosaminoglycan, hyaluronan, within VSMCs. M(Hb) supernatants enhanced HAS production in VSMCs, while knocking down HAS attenuated its anticalcific effect. NF-κB blockade in ApoE-/- mice reduced hyaluronan and increased VC. In human arteries, hyaluronan and HAS were increased in areas of CD163+ macrophage presence. Our findings highlight an important mechanism by which CD163+ macrophages inhibit VC through NF-κB-induced HAS augmentation and thus promote the high-risk plaque development.


Assuntos
Aterosclerose , Placa Aterosclerótica , Calcificação Vascular , Camundongos , Humanos , Animais , NF-kappa B , Ácido Hialurônico , Camundongos Knockout para ApoE , Macrófagos , Aterosclerose/complicações , Apolipoproteínas E/genética
2.
Expert Rev Cardiovasc Ther ; 20(9): 689-705, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35942866

RESUMO

INTRODUCTION: Atherosclerosis-based ischemic heart disease is still the primary cause of death throughout the world. Over the past decades there has been no significant changes in the therapeutic approaches to atherosclerosis, which are mainly based on lipid lowering therapies and management of comorbid conditions such as diabetes and hypertension. The involvement of macrophages in atherosclerosis has been recognized for decades. More recently, a more detailed and sophisticated understanding of their various phenotypes and roles in the atherosclerotic process has been recognized. This new data is revealing how specific subtypes of macrophage-induced inflammation may have distinct effects on atherosclerosis progression and may provide new approaches for treatment, based upon targeting of specific macrophage subtypes. AREAS COVERED: We will comprehensively review the spectrum of macrophage phenotypes and how they contribute to atherosclerotic plaque development and progression. EXPERT OPINION: Various signals derived from atherosclerotic lesions drive macrophages into complex subsets with different gene expression profiles, phenotypes, and functions, not all of which are understood. Macrophage phenotypes include those that enhance, heal, and regress the atherosclerotic lesions though various mechanisms. Targeting of specific macrophage phenotypes may provide a promising and novel approach to prevent atherosclerosis progression.


Assuntos
Aterosclerose , Placa Aterosclerótica , Aterosclerose/patologia , Humanos , Lipídeos , Macrófagos/metabolismo , Macrófagos/patologia , Fenótipo , Placa Aterosclerótica/patologia
3.
Atherosclerosis ; 278: 66-72, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30253291

RESUMO

BACKGROUND AND AIMS: The recombinant adeno-associated viral vector serotype 8 expressing the gain-of-function mutation of mouse proprotein convertase subtilisin/kexin type 9 (AAV8- PCSK9) is a new model for the induction of hypercholesterolemia. AAV8 preferentially infects hepatocytes and the incorporated liver-specific promoter should ensure expression of PCSK9 in the liver. Since tissue distribution of AAVs can differ between male and female mice, we investigated the differences in PCSK9 expression and hypercholesterolemia development between male and female mice using the AAV8-PCSK9 model. METHODS: Male and female C57BL/6 mice were injected with either a low-dose or high-dose of AAV8-PCSK9 and fed a high-fat diet. Plasma lipid levels were evaluated as a measure of the induction of hypercholesterolemia. RESULTS: Injection of mice with low dose AAV8-PCSK9 dramatically elevated both serum PCSK9 and cholesterol levels in male but not female mice. Increasing the dose of AAV8-PCSK9 threefold in female mice rescued the hypercholesterolemia phenotype but did not result in full restoration of AAV8-PCSK9 transduction of livers in female mice compared to the low-dose male mice. Our data demonstrate female mice respond differently to AAV8-PCSK9 injection compared to male mice. CONCLUSIONS: These differences do not hinder the use of female mice when AAV8-PCSK9 doses are taken into consideration. However, localization to and production of AAV8-PCSK9 in organs besides the liver in mice may introduce confounding factors into studies and should be considered during experimental design.


Assuntos
Hipercolesterolemia/metabolismo , Fígado/metabolismo , Pró-Proteína Convertase 9/biossíntese , Fatores Sexuais , Animais , Dependovirus , Modelos Animais de Doenças , Feminino , Técnicas de Transferência de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação
4.
J Vasc Res ; 55(2): 98-110, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29455203

RESUMO

BACKGROUND: Mitochondrial reactive oxygen species (ROS) contribute to inflammation and vascular remodeling during atherosclerotic plaque formation. C57BL/6N (6N) and C57BL/6J (6J) mice display distinct mitochondrial redox balance due to the absence of nicotinamide nucleotide transhydrogenase (NNT) in 6J mice. We hypothesize that differential NNT expression between these animals alters plaque development. METHODS: 6N and 6J mice were treated with AAV8-PCSK9 (adeno-associated virus serotype 8/proprotein convertase subtilisin/kexin type 9) virus leading to hypercholesterolemia, increased low-density lipoprotein, and atherosclerosis in mice fed a high-fat diet (HFD). Mice were co-treated with the mitochondria-targeted superoxide dismutase mimetic MitoTEMPO to assess the contribution of mitochondrial ROS to atherosclerosis. RESULTS: Baseline and HFD-induced vascular superoxide is increased in 6J compared to 6N mice. MitoTEMPO diminished superoxide in both groups demonstrating differential production of mitochondrial ROS among these strains. PCSK9 treatment and HFD led to similar increases in plasma lipids in both 6N and 6J mice. However, 6J animals displayed significantly higher levels of plaque formation. MitoTEMPO reduced plasma lipids but did not affect plaque formation in 6N mice. In contrast, MitoTEMPO surprisingly increased plaque formation in 6J mice. CONCLUSION: These data indicate that loss of NNT increases vascular ROS production and exacerbates atherosclerotic plaque development.


Assuntos
Aorta/enzimologia , Doenças da Aorta/enzimologia , Aterosclerose/enzimologia , NADP Trans-Hidrogenase Específica para A ou B/deficiência , Animais , Antioxidantes/farmacologia , Aorta/efeitos dos fármacos , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/patologia , Colesterol/sangue , Modelos Animais de Doenças , Predisposição Genética para Doença , Hipercolesterolemia/enzimologia , Hipercolesterolemia/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , NADP Trans-Hidrogenase Específica para A ou B/genética , Compostos Organofosforados/farmacologia , Fenótipo , Piperidinas/farmacologia , Placa Aterosclerótica , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Superóxidos/metabolismo , Fatores de Tempo
5.
Arterioscler Thromb Vasc Biol ; 38(2): 324-334, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29217509

RESUMO

OBJECTIVE: Macrophage proinflammatory responses induced by modified low-density lipoproteins (modLDL) contribute to atherosclerotic progression. How modLDL causes macrophages to become proinflammatory is still enigmatic. Macrophage foam cell formation induced by modLDL requires glycerolipid synthesis. Lipin-1, a key enzyme in the glycerolipid synthesis pathway, contributes to modLDL-elicited macrophage proinflammatory responses in vitro. The objective of this study was to determine whether macrophage-associated lipin-1 contributes to atherogenesis and to assess its role in modLDL-mediated signaling in macrophages. APPROACH AND RESULTS: We developed mice lacking lipin-1 in myeloid-derived cells and used adeno-associated viral vector 8 expressing the gain-of-function mutation of mouse proprotein convertase subtilisin/kexin type 9 (adeno-associated viral vector 8-proprotein convertase subtilisin/kexin type 9) to induce hypercholesterolemia and plaque formation. Mice lacking myeloid-associated lipin-1 had reduced atherosclerotic burden compared with control mice despite similar plasma lipid levels. Stimulation of bone marrow-derived macrophages with modLDL activated a persistent protein kinase Cα/ßII-extracellular receptor kinase1/2-jun proto-oncogene signaling cascade that contributed to macrophage proinflammatory responses that was dependent on lipin-1 enzymatic activity. CONCLUSIONS: Our data demonstrate that macrophage-associated lipin-1 is atherogenic, likely through persistent activation of a protein kinase Cα/ßII-extracellular receptor kinase1/2-jun proto-oncogene signaling cascade that contributes to foam cell proinflammatory responses. Taken together, these results suggest that modLDL-induced foam cell formation and modLDL-induced macrophage proinflammatory responses are not independent consequences of modLDL stimulation but rather are both directly influenced by enhanced lipid synthesis.


Assuntos
Aorta/enzimologia , Doenças da Aorta/enzimologia , Aterosclerose/enzimologia , Mediadores da Inflamação/metabolismo , Inflamação/enzimologia , Lipoproteínas LDL/sangue , Macrófagos/enzimologia , Proteínas Nucleares/metabolismo , Fosfatidato Fosfatase/metabolismo , Animais , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/patologia , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Espumosas/enzimologia , Células Espumosas/patologia , Inflamação/genética , Inflamação/patologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Fosfatidato Fosfatase/deficiência , Fosfatidato Fosfatase/genética , Placa Aterosclerótica , Proteína Quinase C beta/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Células RAW 264.7 , Transdução de Sinais
6.
Atherosclerosis ; 242(2): 424-32, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26288136

RESUMO

Atherosclerosis is a chronic inflammatory disease of large and medium-sized arteries and the underlying cause of cardiovascular disease, a major cause of mortality worldwide. The over-accumulation of modified cholesterol-containing low-density lipoproteins (e.g. oxLDL) in the artery wall and the subsequent recruitment and activation of macrophages contributes to the development of atherosclerosis. The excessive uptake of modified-LDL by macrophages leads to a lipid-laden "foamy" phenotype and pro-inflammatory cytokine production. Modified-LDLs promote foam cell formation in part by stimulating de novo lipid biosynthesis. However, it is unknown if lipid biosynthesis directly regulates foam cell pro-inflammatory mediator production. Lipin-1, a phosphatidate phosphohydrolase required for the generation of diacylglycerol during glycerolipid synthesis has recently been demonstrated to contribute to bacterial-induced pro-inflammatory responses by macrophages. In this study we present evidence demonstrating the presence of lipin-1 within macrophages in human atherosclerotic plaques. Additionally, reducing lipin-1 levels in macrophages significantly inhibits both modified-LDL-induced foam cell formation in vitro, as observed by smaller/fewer intracellular lipid inclusions, and ablates modified-LDL-elicited production of the pro-atherogenic mediators tumor necrosis factor-α, interleukin-6, and prostaglandin E2. These findings demonstrate a critical role for lipin-1 in the regulation of macrophage inflammatory responses to modified-LDL. These data begin to link the processes of foam cell formation and pro-inflammatory cytokine production within macrophages.


Assuntos
Lipoproteínas LDL/metabolismo , Macrófagos/citologia , Proteínas Nucleares/metabolismo , Fosfatidato Fosfatase/metabolismo , Placa Aterosclerótica/metabolismo , Animais , Apolipoproteínas E/genética , Apoptose , Aterosclerose/patologia , Linhagem Celular , Dinoprostona/metabolismo , Citometria de Fluxo , Células Espumosas/citologia , Regulação da Expressão Gênica , Humanos , Técnicas Imunoenzimáticas , Inflamação , Interleucina-6/metabolismo , Lipídeos/química , Lipoproteínas LDL/química , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA