Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Br J Haematol ; 204(4): 1439-1449, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37807708

RESUMO

Induction therapy followed by CD34+ cell mobilisation and autologous transplantation represents standard of care for multiple myeloma (MM). However, the anti-CD38 monoclonal antibodies daratumumab and isatuximab have been associated with mobilisation impairment, yet the mechanism remains unclear. In this study, we investigated the effect of three different regimens (dara-VCd, isa-KRd and VTd) on CD34+ cells using flow cytometry and transcriptomics. Decreased CD34+ cell peak concentration and yields, longer collection and delayed engraftment were reproduced after dara-VCd/isa-KRd versus VTd induction in 34 patients in total. Using flow cytometry, we detected major changes in the proportion of apheresis product and bone marrow CD34+ subsets in patients treated with regimens containing anti-CD38 therapy; however, without any decrease in CD38high B-lymphoid progenitors in both materials. RNA-seq of mobilised CD34+ cells from 21 patients showed that adhesion genes are overexpressed in CD34+ cells after dara-VCd/isa-KRd and JCAD, NRP2, MDK, ITGA3 and CLEC3B were identified as potential target genes. Finally, direct in vitro effect of isatuximab in upregulating JCAD and CLEC3B was confirmed by quantitative PCR. These findings suggest that upregulated adhesion-related interactions, rather than killing of CD34+ cells by effector mechanisms, could be leading causes of decreased mobilisation efficacy in MM patients treated with anti-CD38 therapy.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/terapia , Antígenos CD34/análise , Medula Óssea/química , Citometria de Fluxo , Mobilização de Células-Tronco Hematopoéticas , ADP-Ribosil Ciclase 1
2.
Plant Genome ; 15(1): e20191, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35092350

RESUMO

Three out of four RNA components of ribosomes are encoded by 45S ribosomal DNA (rDNA) loci, which are organized as long head-to-tail tandem arrays of nearly identical units, spanning several megabases of sequence. Due to this structure, the rDNA loci are the major sources of gaps in genome assemblies, and gene copy number, sequence composition, and expression status of particular arrays remain elusive, especially in complex genomes harboring multiple loci. Here we conducted a multi-omics study to decipher the 45S rDNA loci in hexaploid bread wheat. Coupling chromosomal genomics with optical mapping, we reconstructed individual rDNA arrays, enabling locus-specific analyses of transcription activity and methylation status from RNA- and bisulfite-sequencing data. We estimated a total of 6,650 rDNA units in the bread wheat genome, with approximately 2,321, 3,910, 253, and 50 gene copies located in short arms of chromosomes 1B, 6B, 5D, and 1A, respectively. Only 1B and 6B loci contributed substantially to rRNA transcription at a roughly 2:1 ratio. The ratio varied among five tissues analyzed (embryo, coleoptile, root tip, primary leaf, mature leaf), being the highest (2.64:1) in mature leaf and lowest (1.72:1) in coleoptile. Cytosine methylation was considerably higher in CHG context in the silenced 5D locus as compared with the active 1B and 6B loci. In conclusion, a fine genomic organization and tissue-specific expression of rDNA loci were deciphered, for the first time, in a complex polyploid species. The results are discussed in the context of wheat evolution and transcription regulation.


Assuntos
Pão , Triticum , DNA Ribossômico/genética , Poliploidia , RNA Ribossômico/genética , Triticum/genética
3.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830250

RESUMO

The plant nucleus plays an irreplaceable role in cellular control and regulation by auxin (indole-3-acetic acid, IAA) mainly because canonical auxin signaling takes place here. Auxin can enter the nucleus from either the endoplasmic reticulum or cytosol. Therefore, new information about the auxin metabolome (auxinome) in the nucleus can illuminate our understanding of subcellular auxin homeostasis. Different methods of nuclear isolation from various plant tissues have been described previously, but information about auxin metabolite levels in nuclei is still fragmented and insufficient. Herein, we tested several published nucleus isolation protocols based on differential centrifugation or flow cytometry. The optimized sorting protocol leading to promising yield, intactness, and purity was then combined with an ultra-sensitive mass spectrometry analysis. Using this approach, we can present the first complex report on the auxinome of isolated nuclei from cell cultures of Arabidopsis and tobacco. Moreover, our results show dynamic changes in auxin homeostasis at the intranuclear level after treatment of protoplasts with free IAA, or indole as a precursor of auxin biosynthesis. Finally, we can conclude that the methodological procedure combining flow cytometry and mass spectrometry offers new horizons for the study of auxin homeostasis at the subcellular level.


Assuntos
Arabidopsis/metabolismo , Fracionamento Celular/métodos , Núcleo Celular/metabolismo , Ácidos Indolacéticos/metabolismo , Indóis/metabolismo , Nicotiana/metabolismo , Células Vegetais/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/ultraestrutura , Técnicas de Cultura de Células , Fracionamento Celular/instrumentação , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/ultraestrutura , Centrifugação/métodos , Citometria de Fluxo , Homeostase/fisiologia , Indóis/farmacologia , Espectrometria de Massas , Células Vegetais/efeitos dos fármacos , Células Vegetais/ultraestrutura , Reguladores de Crescimento de Plantas/metabolismo , Protoplastos/química , Nicotiana/efeitos dos fármacos , Nicotiana/ultraestrutura
4.
Front Plant Sci ; 12: 629089, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335638

RESUMO

Cadmium is an environmental pollutant with high toxicity that negatively affects plant growth and development. To understand the molecular mechanisms of plant response to cadmium stress, we have performed a genome-wide transcriptome analysis on barley plants treated with an increased concentration of cadmium. Differential gene expression analysis revealed 10,282 deregulated transcripts present in the roots and 7,104 in the shoots. Among them, we identified genes related to reactive oxygen species metabolism, cell wall formation and maintenance, ion membrane transport and stress response. One of the most upregulated genes was PLANT CADMIUM RESISTACE 2 (HvPCR2) known to be responsible for heavy metal detoxification in plants. Surprisingly, in the transcriptomic data we identified four different copies of the HvPCR2 gene with a specific pattern of upregulation in individual tissues. Heterologous expression of all five barley copies in a Cd-sensitive yeast mutant restored cadmium resistance. In addition, four HvPCR2 were located in tandem arrangement in a single genomic region of the barley 5H chromosome. To our knowledge, this is the first example showing multiplication of the PCR2 gene in plants.

5.
Nat Commun ; 12(1): 4971, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404809

RESUMO

Polyhedral boranes and heteroboranes appear almost exclusively as neutral or anionic species, while the cationic ones are protonated at exoskeletal heteroatoms or they are instable. Here we report the reactivity of 10-vertex closo-dicarbadecaboranes with one or two equivalents of N-heterocyclic carbene to 10-vertex nido mono- and/or bis-carbene adducts, respectively. These complexes easily undergo a reaction with HCl to give cages of stable and water soluble 10-vertex nido-type cations with protonation in the form of a BHB bridge or 10-vertex closo-type cations containing one carbene ligand when originating from closo-1,10-dicarbadecaborane. The reaction of a 10-vertex nido mono-carbene adduct with phosphorus trichloride gives nido-11-vertex 2-phospha-7,8-dicarbaundecaborane, which undergoes an oxidation of the phosphorus atom to P = O, while the product of a bis-carbene adduct reaction is best described as a distorted C2B6H8 fragment bridged by the (BH)2PCl2+ moiety.

6.
Nat Commun ; 12(1): 2563, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963185

RESUMO

Non-random gene organization in eukaryotes plays a significant role in genome evolution. Here, we investigate the origin of a biosynthetic gene cluster for production of defence compounds in oat-the avenacin cluster. We elucidate the structure and organisation of this 12-gene cluster, characterise the last two missing pathway steps, and reconstitute the entire pathway in tobacco by transient expression. We show that the cluster has formed de novo since the divergence of oats in a subtelomeric region of the genome that lacks homology with other grasses, and that gene order is approximately colinear with the biosynthetic pathway. We speculate that the positioning of the late pathway genes furthest away from the telomere may mitigate against a 'self-poisoning' scenario in which toxic intermediates accumulate as a result of telomeric gene deletions. Our investigations reveal a striking example of adaptive evolution underpinned by remarkable genome plasticity.


Assuntos
Avena/genética , Resistência à Doença/genética , Redes e Vias Metabólicas/genética , Telômero/genética , Avena/metabolismo , Grão Comestível/genética , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Família Multigênica , RNA-Seq , Sequências Repetitivas de Ácido Nucleico , Saponinas/biossíntese , Saponinas/química , Saponinas/genética , Sintenia/genética , Nicotiana/metabolismo , Sequenciamento Completo do Genoma
7.
Mol Biol Rep ; 47(3): 1991-2003, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32034627

RESUMO

Diploid A genome wheat species harbor immense genetic variability which has been targeted and proven useful in wheat improvement. Development and deployment of sequence-based markers has opened avenues for comparative analysis, gene transfer and marker assisted selection (MAS) using high throughput cost effective genotyping techniques. Chromosome 2A of wheat is known to harbor several economically important genes. The present study aimed at identification of genic sequences corresponding to full length cDNAs and mining of SSRs and ISBPs from 2A draft sequence assembly of hexaploid wheat cv. Chinese Spring for marker development. In total, 1029 primer pairs including 478 gene derived, 501 SSRs and 50 ISBPs were amplified in diploid A genome species Triticum monococcum and T. boeoticum identifying 221 polymorphic loci. Out of these, 119 markers were mapped onto a pre-existing chromosome 2A genetic map consisting of 42 mapped markers. The enriched genetic map constituted 161 mapped markers with final map length of 549.6 cM. Further, 2A genetic map of T. monococcum was anchored to the physical map of 2A of cv. Chinese Spring which revealed several rearrangements between the two species. The present study generated a highly saturated genetic map of 2A and physical anchoring of genetically mapped markers revealed a complex genetic architecture of chromosome 2A that needs to be investigated further.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Diploide , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Poliploidia , Análise de Sequência de DNA
8.
MethodsX ; 5: 328-336, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30046519

RESUMO

Next-generation genome mapping through nanochannels (Bionano optical mapping) of plant genomes brings genome assemblies to the 'nearly-finished' level for reliable and detailed gene annotations and assessment of structural variations. Despite the recent progress in its development, researchers face the technical challenges of obtaining sufficient high molecular weight (HMW) nuclear DNA due to cell walls which are difficult to disrupt and to the presence of cytoplasmic polyphenols and polysaccharides that co-precipitate or are covalently bound to DNA and might cause oxidation and/or affect the access of nicking enzymes to DNA, preventing downstream applications. Here we describe important improvements for obtaining HMW DNA that we tested on Solanum crops and wild relatives. The methods that we further elaborated and refined focus on •Improving flexibility of using different tissues as source materials, like fast-growing root tips and young leaves from seedlings or in vitro plantlets.•Obtaining nuclei suspensions through either lab homogenizers or by chopping.•Increasing flow sorting efficiency using DAPI (4',6-diamidino-2-phenylindole) and PI (propidium iodide) DNA stains, with different lasers (UV or 488 nm) and sorting platforms such as the FACSAria and FACSVantage flow sorters, thus making it appropriate for more laboratories working on plant genomics. The obtained nuclei are embedded into agarose plugs for processing and isolating uncontaminated HMW DNA, which is a prerequisite for nanochannel-based next-generation optical mapping strategies.

9.
Plant Biotechnol J ; 16(12): 2077-2087, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29729062

RESUMO

Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is the progenitor of wheat. We performed chromosome-based survey sequencing of the 14 chromosomes, examining repetitive sequences, protein-coding genes, miRNA/target pairs and tRNA genes, as well as syntenic relationships with related grasses. We found considerable differences in the content and distribution of repetitive sequences between the A and B subgenomes. The gene contents of individual chromosomes varied widely, not necessarily correlating with chromosome size. We catalogued candidate agronomically important loci, along with new alleles and flanking sequences that can be used to design exome sequencing. Syntenic relationships and virtual gene orders revealed several small-scale evolutionary rearrangements, in addition to providing evidence for the 4AL-5AL-7BS translocation in wild emmer wheat. Chromosome-based sequence assemblies contained five novel miRNA families, among 59 families putatively encoded in the entire genome which provide insight into the domestication of wheat and an overview of the genome content and organization.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta/genética , Triticum/genética , Sequência Conservada/genética , Citometria de Fluxo , Genes de Plantas/genética , Loci Gênicos/genética , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Poaceae/genética , Poliploidia , RNA não Traduzido/genética , Sequências Repetitivas de Ácido Nucleico/genética , Tetraploidia
10.
Plant Physiol ; 177(1): 168-180, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29545269

RESUMO

Semidwarfing genes have improved crop yield by reducing height, improving lodging resistance, and allowing plants to allocate more assimilates to grain growth. In wheat (Triticum aestivum), the Rht18 semidwarfing gene was identified and deployed in durum wheat before it was transferred into bread wheat, where it was shown to have agronomic potential. Rht18, a dominant and gibberellin (GA) responsive mutant, is genetically and functionally distinct from the widely used GA-insensitive semidwarfing genes Rht-B1b and Rht-D1b In this study, the Rht18 gene was identified by mutagenizing the semidwarf durum cultivar Icaro (Rht18) and generating mutants with a range of tall phenotypes. Isolating and sequencing chromosome 6A of these "overgrowth" mutants showed that they contained independent mutations in the coding region of GA2oxA9GA2oxA9 is predicted to encode a GA 2-oxidase that metabolizes GA biosynthetic intermediates into inactive products, effectively reducing the amount of bioactive GA (GA1). Functional analysis of the GA2oxA9 protein demonstrated that GA2oxA9 converts the intermediate GA12 to the inactive metabolite GA110 Furthermore, Rht18 showed higher expression of GA2oxA9 and lower GA content compared with its tall parent. These data indicate that the increased expression of GA2oxA9 in Rht18 results in a reduction of both bioactive GA content and plant height. This study describes a height-reducing mechanism that can generate new genetic diversity for semidwarfism in wheat by combining increased expression with mutations of specific amino acid residues in GA2oxA9.


Assuntos
Giberelinas/metabolismo , Proteínas de Plantas/genética , Triticum/crescimento & desenvolvimento , Triticum/genética , Centrômero/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Giberelinas/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Mutagênese , Proteínas de Plantas/metabolismo , Poliploidia , Regiões Promotoras Genéticas , Triticum/metabolismo
11.
Methods Mol Biol ; 1659: 231-243, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28856655

RESUMO

MutChromSeq is an approach for isolation of genes and DNA sequences controlling gene expression in plants with complex and polyploid genomes. It involves a lossless complexity reduction by flow cytometric chromosome sorting and shotgun sequencing DNA from isolated chromosomes. Comparison of sequences from wild-type parental chromosome with chromosomes from multiple independently derived mutants identifies causative mutations in a single candidate gene or a noncoding sequence. MutChromSeq does not rely on recombination-based genetic mapping and does not exclude any DNA sequence from being targeted.


Assuntos
Cromossomos de Plantas/genética , DNA de Plantas/genética , Genômica/métodos , Mutação , Plantas/genética , Citometria de Fluxo/métodos , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Hibridização in Situ Fluorescente/métodos , Poliploidia , Análise de Sequência de DNA/métodos
12.
Plant Genome ; 10(2)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28724077

RESUMO

Bread wheat ( L.) is one of the most important crops worldwide. Although a reference genome sequence would represent a valuable resource for wheat improvement through genomics-assisted breeding and gene cloning, its generation has long been hampered by its allohexaploidy, high repeat content, and large size. As a part of a project coordinated by the International Wheat Genome Sequencing Consortium (IWGSC), a physical map of the short arm of wheat chromosome 3D (3DS) was prepared to facilitate reference genome assembly and positional gene cloning. It comprises 869 contigs with a cumulative length of 274.5 Mbp and represents 85.5% of the estimated chromosome arm size. Eighty-six Mbp of survey sequences from chromosome arm 3DS were assigned in silico to physical map contigs via next-generation sequencing of bacterial artificial chromosome pools, thus providing a high-density framework for physical map ordering along the chromosome arm. About 60% of the physical map was anchored in this single experiment. Finally, 1393 high-confidence genes were anchored to the physical map. Comparisons of gene space of the chromosome arm 3DS with genomes of closely related species [ (L.) P.Beauv., rice ( L.), and sorghum [ (L.) Moench] and homeologous wheat chromosomes provided information about gene movement on the chromosome arm.


Assuntos
Cromossomos de Plantas , Triticum/genética , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Clonagem Molecular , Polimorfismo de Nucleotídeo Único , Poliploidia
13.
Sci Rep ; 6: 36398, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27821854

RESUMO

The hexaploid wheat genotype Chinese Spring (CS) has been used worldwide as the reference base for wheat genetics and genomics, and significant resources have been used by the international community to generate a reference wheat genome based on this genotype. By sequencing flow-sorted 3B chromosome from a hexaploid wheat genotype CRNIL1A and comparing the obtained sequences with those available for CS, we detected that a large number of sequences in the former were missing in the latter. If the distribution of such sequences in the hexaploid wheat genome is random, CRNILA sequences missing in CS could be as much as 159.3 Mb even if only fragments of 50 bp or longer were considered. Analysing RNA sequences available in the public domains also revealed that dispensable genes are common in hexaploid wheat. Together with those extensive intra- and interchromosomal rearrangements in CS, the existence of such dispensable genes is another factor highlighting potential issues with the use of reference genomes in various studies. Strong deviation in distributions of these dispensable sequences among genotypes with different geographical origins provided the first evidence indicating that they could be associated with adaptation in wheat.


Assuntos
Cromossomos de Plantas/genética , Análise de Sequência de DNA/métodos , Triticum/genética , Mapeamento Cromossômico , Genoma de Planta , Poliploidia
14.
Genome Biol Evol ; 8(6): 1996-2005, 2016 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-27324917

RESUMO

In many plant species, somatic cell differentiation is accompanied by endoreduplication, a process during which cells undergo one or more rounds of DNA replication cycles in the absence of mitosis, resulting in nuclei with multiples of 2C DNA amounts (4C, 8C, 16C, etc.). In some orchids, a disproportionate increase in nuclear DNA contents has been observed, where successive endoreduplication cycles result in DNA amounts 2C + P, 2C + 3P, 2C + 7P, etc., where P is the DNA content of the replicated part of the 2C nuclear genome. This unique phenomenon was termed "progressively partial endoreplication" (PPE). We investigated processes behind the PPE in Ludisia discolor using flow cytometry (FCM) and Illumina sequencing. In particular, we wanted to determine whether chromatin elimination or incomplete genome duplication was involved, and to identify types of DNA sequences that were affected. Cell cycle analysis of root tip cell nuclei pulse-labeled with EdU revealed two cell cycles, one ending above the population of nuclei with 2C + P content, and the other with a typical "horseshoe" pattern of S-phase nuclei ranging from 2C to 4C DNA contents. The process leading to nuclei with 2C + P amounts therefore involves incomplete genome replication. Subsequent Illumina sequencing of flow-sorted 2C and 2C + P nuclei showed that all types of repetitive DNA sequences were affected during PPE; a complete elimination of any specific type of repetitive DNA was not observed. We hypothesize that PPE is part of a highly controlled transition mechanism from proliferation phase to differentiation phase of plant tissue development.


Assuntos
Replicação do DNA/genética , Endorreduplicação/genética , Citometria de Fluxo/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Núcleo Celular/genética , Genoma de Planta , Mitose/genética , Orchidaceae/genética , Folhas de Planta/genética , Poliploidia
15.
Plant Biotechnol J ; 14(7): 1523-31, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26801360

RESUMO

The assembly of a reference genome sequence of bread wheat is challenging due to its specific features such as the genome size of 17 Gbp, polyploid nature and prevalence of repetitive sequences. BAC-by-BAC sequencing based on chromosomal physical maps, adopted by the International Wheat Genome Sequencing Consortium as the key strategy, reduces problems caused by the genome complexity and polyploidy, but the repeat content still hampers the sequence assembly. Availability of a high-resolution genomic map to guide sequence scaffolding and validate physical map and sequence assemblies would be highly beneficial to obtaining an accurate and complete genome sequence. Here, we chose the short arm of chromosome 7D (7DS) as a model to demonstrate for the first time that it is possible to couple chromosome flow sorting with genome mapping in nanochannel arrays and create a de novo genome map of a wheat chromosome. We constructed a high-resolution chromosome map composed of 371 contigs with an N50 of 1.3 Mb. Long DNA molecules achieved by our approach facilitated chromosome-scale analysis of repetitive sequences and revealed a ~800-kb array of tandem repeats intractable to current DNA sequencing technologies. Anchoring 7DS sequence assemblies obtained by clone-by-clone sequencing to the 7DS genome map provided a valuable tool to improve the BAC-contig physical map and validate sequence assembly on a chromosome-arm scale. Our results indicate that creating genome maps for the whole wheat genome in a chromosome-by-chromosome manner is feasible and that they will be an affordable tool to support the production of improved pseudomolecules.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Genoma de Planta , Triticum/genética , Biotecnologia/métodos , Cromossomos Artificiais Bacterianos , Análise de Sequência de DNA/métodos , Sequências de Repetição em Tandem
16.
Plant Biotechnol J ; 13(6): 740-52, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25516153

RESUMO

Flow cytometric sorting of individual chromosomes and chromosome-based sequencing reduces the complexity of large, repetitive Triticeae genomes. We flow-sorted chromosome 5D of Aegilops tauschii, the D genome donor of bread wheat and sequenced it by Roche 454 GS FLX platform to approximately 2.2x coverage. Repetitive sequences represent 81.09% of the survey sequences of this chromosome, and Class I retroelements are the prominent type, with a particular abundance of LTR/Gypsy superfamily. Nonrepetitive sequences were assembled to cover 17.76% of the total chromosome regions. Up to 6188 nonrepetitive gene loci were predicted to be encoded by the 5D chromosome. The numbers and chromosomal distribution patterns of tRNA genes suggest abundance in tRNA(L) (ys) and tRNA(M) (et) species, while the nonrepetitive assembly reveals tRNA(A) (la) species as the most abundant type. A comparative analysis of the genomic sequences of bread wheat and Aegilops chromosome 5D indicates conservation of gene content. Orthologous unique genes, matching Aegilops 5D sequences, numbered 3730 in barley, 5063 in Brachypodium, 4872 in sorghum and 4209 in rice. In this study, we provide a chromosome-specific view into the structure and organization of the 5D chromosome of Ae. tauschii, the D genome ancestor of bread wheat. This study contributes to our understanding of the chromosome-level evolution of the wheat genome and presents a valuable resource in wheat genomics due to the recent hybridization of Ae. tauschii genome with its tetraploid ancestor.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas , Poliploidia , Triticum/genética , Ordem dos Genes , Genes de Plantas , Modelos Biológicos , Dados de Sequência Molecular , Triticum/classificação
17.
Theor Appl Genet ; 127(5): 1091-104, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24553964

RESUMO

KEY MESSAGE: Chromosomes 5A (u) , 5S and 5D can be isolated from wild progenitors, providing a chromosome-based approach to develop tools for breeding and to study the genome evolution of wheat. The three subgenomes of hexaploid bread wheat originated from Triticum urartu (A(u)A(u)), from a species similar to Aegilops speltoides (SS) (progenitor of the B genome), and from Ae. tauschii (DD). Earlier studies indicated the potential of chromosome genomics to assist gene transfer from wild relatives of wheat and discover novel genes for wheat improvement. This study evaluates the potential of flow cytometric chromosome sorting in the diploid progenitors of bread wheat. Flow karyotypes obtained by analysing DAPI-stained chromosomes were characterized and the contents of the chromosome peaks were determined. FISH analysis with repetitive DNA probes proved that chromosomes 5A(u), 5S and 5D could be sorted with purities of 78-90 %, while the remaining chromosomes could be sorted in groups of three. Twenty-five conserved orthologous set (COS) markers covering wheat homoeologous chromosome groups 1-7 were used for PCR with DNA amplified from flow-sorted chromosomes and genomic DNA. These assays validated the cytomolecular results as follows: peak I on flow karyotypes contained chromosome groups 1, 4 and 6, peak II represented homoeologous group 5, while peak III consisted of groups 2, 3 and 7. The isolation of individual chromosomes of wild progenitors provides an attractive opportunity to investigate the structure and evolution of the polyploid genome and to deliver tools for wheat improvement.


Assuntos
Triticum/genética , Cromossomos de Plantas/metabolismo , Diploide , Citometria de Fluxo , Genoma de Planta , Genômica , Hibridização in Situ Fluorescente , Cariotipagem/métodos
18.
Biotechnol Adv ; 32(1): 122-36, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24406816

RESUMO

Next generation sequencing (NGS) is revolutionizing genomics and is providing novel insights into genome organization, evolution and function. The number of plant genomes targeted for sequencing is rising. For the moment, however, the acquisition of full genome sequences in large genome species remains difficult, largely because the short reads produced by NGS platforms are inadequate to cope with repeat-rich DNA, which forms a large part of these genomes. The problem of sequence redundancy is compounded in polyploids, which dominate the plant kingdom. An approach to overcoming some of these difficulties is to reduce the full nuclear genome to its individual chromosomes using flow-sorting. The DNA acquired in this way has proven to be suitable for many applications, including PCR-based physical mapping, in situ hybridization, forming DNA arrays, the development of DNA markers, the construction of BAC libraries and positional cloning. Coupling chromosome sorting with NGS offers opportunities for the study of genome organization at the single chromosomal level, for comparative analyses between related species and for the validation of whole genome assemblies. Apart from the primary aim of reducing the complexity of the template, taking a chromosome-based approach enables independent teams to work in parallel, each tasked with the analysis of a different chromosome(s). Given that the number of plant species tractable for chromosome sorting is increasing, the likelihood is that chromosome genomics - the marriage of cytology and genomics - will make a significant contribution to the field of plant genetics.


Assuntos
Cromossomos de Plantas , DNA de Plantas , Técnicas Genéticas , Genoma de Planta , Genômica/métodos
19.
Plant Cell ; 25(10): 3685-98, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24104565

RESUMO

Rye (Secale cereale) is closely related to wheat (Triticum aestivum) and barley (Hordeum vulgare). Due to its large genome (~8 Gb) and its regional importance, genome analysis of rye has lagged behind other cereals. Here, we established a virtual linear gene order model (genome zipper) comprising 22,426 or 72% of the detected set of 31,008 rye genes. This was achieved by high-throughput transcript mapping, chromosome survey sequencing, and integration of conserved synteny information of three sequenced model grass genomes (Brachypodium distachyon, rice [Oryza sativa], and sorghum [Sorghum bicolor]). This enabled a genome-wide high-density comparative analysis of rye/barley/model grass genome synteny. Seventeen conserved syntenic linkage blocks making up the rye and barley genomes were defined in comparison to model grass genomes. Six major translocations shaped the modern rye genome in comparison to a putative Triticeae ancestral genome. Strikingly dissimilar conserved syntenic gene content, gene sequence diversity signatures, and phylogenetic networks were found for individual rye syntenic blocks. This indicates that introgressive hybridizations (diploid or polyploidy hybrid speciation) and/or a series of whole-genome or chromosome duplications played a role in rye speciation and genome evolution.


Assuntos
Evolução Molecular , Genoma de Planta , Secale/genética , Sintenia , Brachypodium/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Sequência Conservada , DNA de Plantas/genética , Ordem dos Genes , Especiação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Hordeum/genética , Modelos Genéticos , Oryza/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
20.
PLoS One ; 8(8): e70844, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23940651

RESUMO

Diploid Aegilops umbellulata and Ae. comosa and their natural allotetraploid hybrids Ae. biuncialis and Ae. geniculata are important wild gene sources for wheat. With the aim of assisting in alien gene transfer, this study provides gene-based conserved orthologous set (COS) markers for the U and M genome chromosomes. Out of the 140 markers tested on a series of wheat-Aegilops chromosome introgression lines and flow-sorted subgenomic chromosome fractions, 100 were assigned to Aegilops chromosomes and six and seven duplications were identified in the U and M genomes, respectively. The marker-specific EST sequences were BLAST-ed to Brachypodium and rice genomic sequences to investigate macrosyntenic relationships between the U and M genomes of Aegilops, wheat and the model species. Five syntenic regions of Brachypodium identified genome rearrangements differentiating the U genome from the M genome and from the D genome of wheat. All of them seem to have evolved at the diploid level and to have been modified differentially in the polyploid species Ae. biuncialis and Ae. geniculata. A certain level of wheat-Aegilops homology was detected for group 1, 2, 3 and 5 chromosomes, while a clearly rearranged structure was showed for the group 4, 6 and 7 Aegilops chromosomes relative to wheat. The conserved orthologous set markers assigned to Aegilops chromosomes promise to accelerate gene introgression by facilitating the identification of alien chromatin. The syntenic relationships between the Aegilops species, wheat and model species will facilitate the targeted development of new markers specific for U and M genomic regions and will contribute to the understanding of molecular processes related to allopolyploidization.


Assuntos
Genes de Plantas , Poaceae/genética , Sequência de Bases , Duplicação Cromossômica , Cromossomos de Plantas/genética , Sequência Conservada , Etiquetas de Sequências Expressas , Marcadores Genéticos , Genoma de Planta , Poliploidia , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA