Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36978909

RESUMO

Reactive oxygen species (ROS) were originally described as toxic by-products of aerobic cellular energy metabolism associated with the development of several diseases, such as cancer, neurodegenerative diseases, and diabetes [...].

2.
Antioxidants (Basel) ; 11(4)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35453403

RESUMO

Among molecules that bridge environment, cell metabolism, and cell signaling, hydrogen peroxide (H2O2) recently appeared as an emerging but central player. Its level depends on cell metabolism and environment and was recently shown to play key roles during embryogenesis, contrasting with its long-established role in disease progression. We decided to explore whether the secreted morphogen Sonic hedgehog (Shh), known to be essential in a variety of biological processes ranging from embryonic development to adult tissue homeostasis and cancers, was part of these interactions. Here, we report that H2O2 levels control key steps of Shh delivery in cell culture: increased levels reduce primary secretion, stimulate endocytosis and accelerate delivery to recipient cells; in addition, physiological in vivo modulation of H2O2 levels changes Shh distribution and tissue patterning. Moreover, a feedback loop exists in which Shh trafficking controls H2O2 synthesis via a non-canonical BOC-Rac1 pathway, leading to cytoneme growth. Our findings reveal that Shh directly impacts its own distribution, thus providing a molecular explanation for the robustness of morphogenesis to both environmental insults and individual variability.

3.
J Cell Sci ; 135(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35107164

RESUMO

Reactive oxygen species (ROS), originally classified as toxic molecules, have attracted increasing interest given their actions in cell signaling. Hydrogen peroxide (H2O2), the major ROS produced by cells, acts as a second messenger to modify redox-sensitive proteins or lipids. After caudal fin amputation, tight spatiotemporal regulation of ROS is required first for wound healing and later to initiate the regenerative program. However, the mechanisms carrying out this sustained ROS production and their integration with signaling pathways remain poorly understood. We focused on the early dialog between H2O2 and Sonic hedgehog (Shh) during zebrafish fin regeneration. We demonstrate that H2O2 controls Shh expression and that Shh in turn regulates the H2O2 level via a canonical pathway. Moreover, the means of this tight reciprocal control change during the successive phases of the regenerative program. Dysregulation of the Hedgehog pathway has been implicated in several developmental syndromes, diabetes and cancer. These data support the existence of an early positive crosstalk between Shh and H2O2 that might be more generally involved in various processes paving the way to improve regenerative processes, particularly in vertebrates.


Assuntos
Proteínas Hedgehog , Peixe-Zebra , Animais , Proteínas Hedgehog/metabolismo , Peróxido de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio , Cicatrização , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Inorg Chem ; 60(13): 9309-9319, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34109781

RESUMO

Catalases (CAT) are antioxidant metalloenzymes necessary for life in oxygen-metabolizing cells to regulate H2O2 concentration by accelerating its dismutation. Many physiopathological situations are associated with oxidative stress resulting from H2O2 overproduction, during which antioxidant defenses are overwhelmed. We have used a combinatorial approach associated with an activity-based screening to discover a first peptidyl di-copper complex mimicking CAT. The complex was studied in detail and characterized for its CAT activity both in solutions and in cells using different analytical methods. The complex exhibited CAT activity in solutions and, more interestingly, on HyPer HeLa cells that possess a genetically encoded ratiometric fluorescent sensors of H2O2. These results highlight the efficiency of a combinatorial approach for the discovery of peptidyl complexes that exhibit catalytic activity.


Assuntos
Antioxidantes/metabolismo , Catalase/metabolismo , Cobre/metabolismo , Metaloproteínas/metabolismo , Peptídeos/metabolismo , Antioxidantes/química , Catalase/química , Cobre/química , Células HeLa , Humanos , Peróxido de Hidrogênio/metabolismo , Metaloproteínas/química , Peptídeos/química , Células Tumorais Cultivadas
5.
Methods Enzymol ; 624: 1-23, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31370925

RESUMO

The use of light to control the expression of genes and the activity of proteins is a rapidly expanding field. While many of these approaches use a fusion between a light activatable protein and the protein of interest to control the activity of the latter, it is also possible to control the activity of a protein by uncaging a specific ligand. In that context, controlling the activation of a protein fused to the modified estrogen receptor (ERT) by uncaging its ligand cyclofen-OH has emerged as a generic and versatile method to control the activation of proteins quantitatively, quickly and locally in a live organism. Here, we present the experimental details behind this approach.


Assuntos
Optogenética/métodos , Compostos Policíclicos/química , Receptores de Estrogênio/genética , Ativação Transcricional , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Expressão Gênica , Luz , Processos Fotoquímicos , Receptores de Estrogênio/química , Peixe-Zebra/embriologia
6.
Nat Commun ; 10(1): 312, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30659200

RESUMO

Polyps of the cnidarian Hydra maintain their adult anatomy through two developmental organizers, the head organizer located apically and the foot organizer basally. The head organizer is made of two antagonistic cross-reacting components, an activator, driving apical differentiation and an inhibitor, preventing ectopic head formation. Here we characterize the head inhibitor by comparing planarian genes down-regulated when ß-catenin is silenced to Hydra genes displaying a graded apical-to-basal expression and an up-regulation during head regeneration. We identify Sp5 as a transcription factor that fulfills the head inhibitor properties: leading to a robust multiheaded phenotype when knocked-down in Hydra, acting as a transcriptional repressor of Wnt3 and positively regulated by Wnt/ß-catenin signaling. Hydra and zebrafish Sp5 repress Wnt3 promoter activity while Hydra Sp5 also activates its own expression, likely via ß-catenin/TCF interaction. This work identifies Sp5 as a potent feedback loop inhibitor of Wnt/ß-catenin signaling, a function conserved across eumetazoan evolution.


Assuntos
Hydra/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína Wnt3/genética , beta Catenina/genética , Animais , Evolução Biológica , Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Cabeça/crescimento & desenvolvimento , Cabeça/fisiologia , Hydra/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Planárias/genética , Interferência de RNA , Regeneração/fisiologia , Transdução de Sinais , Proteína Wnt3/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , beta Catenina/metabolismo
7.
Antioxidants (Basel) ; 7(11)2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30404180

RESUMO

Reactive oxygen species (ROS), which were originally classified as exclusively deleterious compounds, have gained increasing interest in the recent years given their action as bona fide signalling molecules. The main target of ROS action is the reversible oxidation of cysteines, leading to the formation of disulfide bonds, which modulate protein conformation and activity. ROS, endowed with signalling properties, are mainly produced by NADPH oxidases (NOXs) at the plasma membrane, but their action also involves a complex machinery of multiple redox-sensitive protein families that differ in their subcellular localization and their activity. Given that the levels and distribution of ROS are highly dynamic, in part due to their limited stability, the development of various fluorescent ROS sensors, some of which are quantitative (ratiometric), represents a clear breakthrough in the field and have been adapted to both ex vivo and in vivo applications. The physiological implication of ROS signalling will be presented mainly in the frame of morphogenetic processes, embryogenesis, regeneration, and stem cell differentiation. Gain and loss of function, as well as pharmacological strategies, have demonstrated the wide but specific requirement of ROS signalling at multiple stages of these processes and its intricate relationship with other well-known signalling pathways.

8.
Chembiochem ; 19(12): 1232-1238, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29341391

RESUMO

The use of light to control the expression of genes and the activity of proteins is a rapidly expanding field. Whereas many of these approaches use fusion between a light-activable protein and the protein of interest to control the activity of the latter, it is also possible to control the activity of a protein by uncaging a specific ligand. In that context, controlling the activation of a protein fused to the modified estrogen receptor (ERT) by uncaging its ligand cyclofen-OH has emerged as a generic and versatile method to control the activation of proteins quantitatively, quickly, and locally in a live organism. We present that approach and its uses in a variety of physiological contexts.


Assuntos
Optogenética/métodos , Compostos Policíclicos/metabolismo , Receptores de Estrogênio/genética , Animais , Regulação da Expressão Gênica/efeitos da radiação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Ligantes , Compostos Policíclicos/química , Receptores de Estrogênio/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
9.
Sci Rep ; 7(1): 9195, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28835665

RESUMO

The zebrafish has become an increasingly popular and valuable cancer model over the past few decades. While most zebrafish cancer models are generated by expressing mammalian oncogenes under tissue-specific promoters, here we describe a method that allows for the precise optical control of oncogene expression in live zebrafish. We utilize this technique to transiently or constitutively activate a typical human oncogene, kRASG12V, in zebrafish embryos and investigate the developmental and tumorigenic phenotypes. We demonstrate the spatiotemporal control of oncogene expression in live zebrafish, and characterize the different tumorigenic probabilities when kRASG12V is expressed transiently or constitutively at different developmental stages. Moreover, we show that light can be used to activate oncogene expression in selected tissues and single cells without tissue-specific promoters. Our work presents a novel approach to initiate and study cancer in zebrafish, and the high spatiotemporal resolution of this method makes it a valuable tool for studying cancer initiation from single cells.


Assuntos
Transformação Celular Neoplásica , Neoplasias/etiologia , Neoplasias/patologia , Animais , Biomarcadores Tumorais , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Mutação , Oncogenes , Proteínas Proto-Oncogênicas p21(ras)/genética , Ativação Transcricional/efeitos da radiação , Peixe-Zebra
10.
Dev Biol ; 414(2): 133-41, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27158028

RESUMO

It is now becoming evident that hydrogen peroxide (H2O2), which is constantly produced by nearly all cells, contributes to bona fide physiological processes. However, little is known regarding the distribution and functions of H2O2 during embryonic development. To address this question, we used a dedicated genetic sensor and revealed a highly dynamic spatio-temporal pattern of H2O2 levels during zebrafish morphogenesis. The highest H2O2 levels are observed during somitogenesis and organogenesis, and these levels gradually decrease in the mature tissues. Biochemical and pharmacological approaches revealed that H2O2 distribution is mainly controlled by its enzymatic degradation. Here we show that H2O2 is enriched in different regions of the developing brain and demonstrate that it participates to axonal guidance. Retinal ganglion cell axonal projections are impaired upon H2O2 depletion and this defect is rescued by H2O2 or ectopic activation of the Hedgehog pathway. We further show that ex vivo, H2O2 directly modifies Hedgehog secretion. We propose that physiological levels of H2O2 regulate RGCs axonal growth through the modulation of Hedgehog pathway.


Assuntos
Orientação de Axônios/efeitos dos fármacos , Proteínas Hedgehog/fisiologia , Peróxido de Hidrogênio/metabolismo , Neurogênese/fisiologia , Células Ganglionares da Retina/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Orientação de Axônios/fisiologia , Axônios/metabolismo , Catalase/metabolismo , Cisteína/metabolismo , Células HeLa , Humanos , Proteínas Luminescentes/análise , Transporte Proteico/efeitos dos fármacos , Células Ganglionares da Retina/ultraestrutura , Transdução de Sinais/fisiologia , Superóxido Dismutase/metabolismo , Peixe-Zebra/metabolismo
11.
Purinergic Signal ; 10(4): 595-602, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25084769

RESUMO

A major issue in regenerative medicine is the control of progenitor cell mobilisation. Apoptosis has been reported as playing a role in cell plasticity, and it has been recently shown that apoptosis is necessary for organ and appendage regeneration. In this context, we explore its possible mode of action in progenitor cell recruitment during adult regeneration in zebrafish. Here, we show that apoptosis inhibition impairs blastema formation and nerve growth, both of which can be restored by exogenous adenosine acting through its A2B receptor. Moreover, adenosine increases the number of progenitor cells. Purinergic signalling is therefore an early and essential event in the pathway from lesion to blastema formation and provides new targets for manipulating cell plasticity in the adult.


Assuntos
Adenosina/metabolismo , Nadadeiras de Animais/fisiologia , Apoptose/fisiologia , Receptor A2B de Adenosina/metabolismo , Células-Tronco/metabolismo , Animais , Neurogênese/fisiologia , Regeneração , Peixe-Zebra
12.
Curr Top Dev Biol ; 108: 121-51, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24512708

RESUMO

Recent studies in Drosophila, Hydra, planarians, zebrafish, mice, indicate that cell death can open paths to regeneration in adult animals. Indeed injury can induce cell death, itself triggering regeneration following an immediate instructive mechanism, whereby the dying cells release signals that induce cellular responses over short and/or long-range distances. Cell death can also provoke a sustained derepressing response through the elimination of cells that suppress regeneration in homeostatic conditions. Whether common properties support what we name "regenerative cell death," is currently unclear. As key parameters, we review here the injury proapoptotic signals, the signals released by the dying cells, the cellular responses, and their respective timing. ROS appears as a common signal triggering cell death through MAPK and/or JNK pathway activation. But the modes of ROS production vary, from a brief pulse upon wounding, to repeated waves as observed in the zebrafish fin where ROS supports two peaks of cell death. Indeed regenerative cell death can be restricted to the injury phase, as in Hydra, Drosophila, or biphasic, immediate, and delayed, as in planarians and zebrafish. The dying cells release in a caspase-dependent manner a variety of signaling molecules, cytokines, growth factors, but also prostaglandins or ATP as recorded in Drosophila, Hydra, mice, and zebrafish, respectively. Interestingly, the ROS-producing cells often resist to cell death, implying a complex paracrine mode of signaling to launch regeneration, involving ROS-producing cells, ROS-sensing cells that release signaling molecules upon caspase activation, and effector cells that respond to these signals by proliferating, migrating, and/or differentiating.


Assuntos
Morte Celular , Regeneração/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Caspases/metabolismo , Diferenciação Celular , Drosophila , Ativação Enzimática , Hydra , Sistema de Sinalização das MAP Quinases , Camundongos , Prostaglandinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Xenopus , Peixe-Zebra
13.
PLoS One ; 7(7): e42131, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22860064

RESUMO

Thrombin receptor, F2R or PAR1 is a G-protein coupled receptor, located in the membrane of endothelial cells. It has been initially found to transduce signals in hemostasis, but recently also known to act in cancer and in vascular development. Mouse embryos lacking PAR1 function die from hemorrhages with varying frequency at midgestation. We have performed a survey of potential PAR1 homologs in the zebrafish genome and identified a teleost ortholog of mammalian PAR1. Knockdown of par1 function in zebrafish embryos demonstrates a requirement for Par1 in cardio-vascular development. Furthermore, we show that function of Par1 requires the presence of a phylogenetically conserved proteolytic cleavage site and a second intracellular domain. Altogether our results demonstrate a high degree of conservation of PAR1 proteins in the vertebrate lineage in respect to amino acid sequence as well as protein function.


Assuntos
Sistema Cardiovascular/embriologia , Receptor PAR-1/fisiologia , Peixe-Zebra/embriologia , Animais , Evolução Molecular , Técnicas de Silenciamento de Genes , Frequência Cardíaca , Receptor PAR-1/genética , Fluxo Sanguíneo Regional
14.
Chembiochem ; 12(9): 1337-45, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21633996

RESUMO

DNA methylation is involved in the regulation of gene expression and plays an important role in normal developmental processes and diseases, such as cancer. DNA methyltransferases are the enzymes responsible for DNA methylation on the position 5 of cytidine in a CpG context. In order to identify and characterize novel inhibitors of these enzymes, we developed a fluorescence-based throughput screening by using a short DNA duplex immobilized on 96-well plates. We have screened 114 flavones and flavanones for the inhibition of the murine catalytic Dnmt3a/3L complex and found 36 hits with IC(50) values in the lower micromolar and high nanomolar ranges. The assay, together with inhibition tests on two other methyltransferases, structure-activity relationships and docking studies, gave insights on the mechanism of inhibition. Finally, two derivatives effected zebrafish embryo development, and induced a global demethylation of the genome, at doses lower than the control drug, 5-azacytidine.


Assuntos
DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Desenvolvimento Embrionário/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Peixe-Zebra/embriologia , Animais , Sequência de Bases , Cristalografia por Raios X , DNA (Citosina-5-)-Metiltransferases/química , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Bibliotecas de Moléculas Pequenas/química
15.
Biochim Biophys Acta ; 1810(9): 863-6, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21609754

RESUMO

BACKGROUND: Cells undergoing activation or apoptosis exhibit plasma membrane changes, leading to the formation of shed vesicles (microparticles, MP). Although their effects on recipient cells in vitro, and their ability to support inflammatory or thrombotic events in the circulation have been studied, the spreading of such vesicles in tissues is still elusive. Our aim was to set up a method to examine the behavior of these vesicles in vivo. METHODS: We examined the persistence of green-fluorescent microparticles (fMP), prepared after Ca2+ ionophore activation (iono-fMP) or apoptogenic treatment (eto-fMP) of human Jurkat T lymphoblastic or non-hematopoietic embryonic kidney (HEK) cell lines, following injection in zebrafish embryos 2h after egg fertilization. RESULTS: One hour post-injection, iono-fMP issued from both cell types formed a fluorescent dispersal in the intercellular space of embryos. In contrast, eto-fMP or MP deprived of sialic acid at their membrane, gathered together at the site of injection. CONCLUSIONS: We propose a method characterizing the abilities of MP to spread in the intercellular space. We showed that MP produced by apoptosis of T cells and those deprived of sialic acid at their membrane do not diffuse within the living cells. On the contrary, MP shed upon calcium induced activation of T and HEK cells, diffuse at a distance and spread in the intercellular space. GENERAL SIGNIFICANCE: The fate of injected MP relies on the type of induction rather than the cell species and results provide a model to test the ability of vesicles to interact locally or to spread outside of the site of production.


Assuntos
Micropartículas Derivadas de Células/fisiologia , Animais , Apoptose , Membrana Celular/metabolismo , Embrião não Mamífero , Etoposídeo/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Ionomicina/farmacologia , Células Jurkat , Biologia Molecular/métodos , Movimento , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/metabolismo , Linfócitos T , Peixe-Zebra
16.
Zebrafish ; 7(2): 199-204, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20441524

RESUMO

We implemented a noninvasive optical method for the fast control of Cre recombinase in single cells of a live zebrafish embryo. Optical uncaging of the caged precursor of a nonendogeneous steroid by one- or two-photon illumination was used to restore Cre activity of the CreER(T2) fusion protein in specific target cells. This method labels single cells irreversibly by inducing recombination in an appropriate reporter transgenic animal and thereby can achieve high spatiotemporal resolution in the control of gene expression. This technique could be used more generally to investigate important physiological processes (e.g., in embryogenesis, organ regeneration, or carcinogenesis) with high spatiotemporal resolution (single cell and 10-min scales).


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Integrases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Recombinação Genética/fisiologia , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Primers do DNA/genética , Proteínas de Choque Térmico HSP70/metabolismo , Microscopia de Fluorescência , Processos Fotoquímicos , Reação em Cadeia da Polimerase , Espectrometria de Fluorescência
17.
Chembiochem ; 11(5): 653-63, 2010 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-20187057

RESUMO

We have implemented a noninvasive optical method for the fast control of protein activity in a live zebrafish embryo. It relies on releasing a protein fused to a modified estrogen receptor ligand binding domain from its complex with cytoplasmic chaperones, upon the local photoactivation of a nonendogenous caged inducer. Molecular dynamics simulations were used to design cyclofen-OH, a photochemically stable inducer of the receptor specific for 4-hydroxy-tamoxifen (ER(T2)). Cyclofen-OH was easily synthesized in two steps with good yields. At submicromolar concentrations, it activates proteins fused to the ER(T2) receptor. This was shown in cultured cells and in zebrafish embryos through emission properties and subcellular localization of properly engineered fluorescent proteins. Cyclofen-OH was successfully caged with various photolabile protecting groups. One particular caged compound was efficient in photoinducing the nuclear translocation of fluorescent proteins either globally (with 365 nm UV illumination) or locally (with a focused UV laser or with two-photon illumination at 750 nm). The present method for photocontrol of protein activity could be used more generally to investigate important physiological processes (e.g., in embryogenesis, organ regeneration and carcinogenesis) with high spatiotemporal resolution.


Assuntos
Receptores de Estrogênio/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Peixe-Zebra/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Ciclofenil/química , Embrião não Mamífero/metabolismo , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/metabolismo , Chaperonas Moleculares/metabolismo , Simulação de Dinâmica Molecular , Processos Fotoquímicos , Fótons , Receptores de Estrogênio/genética , Proteínas Recombinantes de Fusão/análise , Tamoxifeno/análogos & derivados , Tamoxifeno/química , Tamoxifeno/farmacologia , Raios Ultravioleta , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
18.
Mol Cell Neurosci ; 33(2): 180-7, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16949838

RESUMO

In this report, we present a study of regeneration of the lateral line, a collection of mechano-sensory organ, in the adult zebrafish caudal fin. As all neuromasts are innervated by axon fibers, neuronal regeneration is a key issue in the regenerating process. We first show that support cells from the last neuromast adjacent to the amputation plane divide and migrate to colonize the blastema in order to reform the missing part of the lateral line. We then show that nerve re-growth takes place later than neuromast progenitor cell migration. We also provide evidence that new growth cones form at the amputation plane and subsequently follow the migrating placode-like structure to re-innervate regenerated neuromasts as they differentiate. Altogether, our observations indicate that caudal lateral line regeneration is not a mere recapitulation of the ontogenic process.


Assuntos
Modelos Animais , Regeneração Nervosa/fisiologia , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/fisiologia , Peixe-Zebra/fisiologia , Estruturas Animais/citologia , Estruturas Animais/inervação , Estruturas Animais/fisiologia , Animais , Biomarcadores , Divisão Celular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA