Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JAMA Neurol ; 80(3): 270-278, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36622685

RESUMO

Importance: Brain-computer interface (BCI) implants have previously required craniotomy to deliver penetrating or surface electrodes to the brain. Whether a minimally invasive endovascular technique to deliver recording electrodes through the jugular vein to superior sagittal sinus is safe and feasible is unknown. Objective: To assess the safety of an endovascular BCI and feasibility of using the system to control a computer by thought. Design, Setting, and Participants: The Stentrode With Thought-Controlled Digital Switch (SWITCH) study, a single-center, prospective, first in-human study, evaluated 5 patients with severe bilateral upper-limb paralysis, with a follow-up of 12 months. From a referred sample, 4 patients with amyotrophic lateral sclerosis and 1 with primary lateral sclerosis met inclusion criteria and were enrolled in the study. Surgical procedures and follow-up visits were performed at the Royal Melbourne Hospital, Parkville, Australia. Training sessions were performed at patients' homes and at a university clinic. The study start date was May 27, 2019, and final follow-up was completed January 9, 2022. Interventions: Recording devices were delivered via catheter and connected to subcutaneous electronic units. Devices communicated wirelessly to an external device for personal computer control. Main Outcomes and Measures: The primary safety end point was device-related serious adverse events resulting in death or permanent increased disability. Secondary end points were blood vessel occlusion and device migration. Exploratory end points were signal fidelity and stability over 12 months, number of distinct commands created by neuronal activity, and use of system for digital device control. Results: Of 4 patients included in analyses, all were male, and the mean (SD) age was 61 (17) years. Patients with preserved motor cortex activity and suitable venous anatomy were implanted. Each completed 12-month follow-up with no serious adverse events and no vessel occlusion or device migration. Mean (SD) signal bandwidth was 233 (16) Hz and was stable throughout study in all 4 patients (SD range across all sessions, 7-32 Hz). At least 5 attempted movement types were decoded offline, and each patient successfully controlled a computer with the BCI. Conclusions and Relevance: Endovascular access to the sensorimotor cortex is an alternative to placing BCI electrodes in or on the dura by open-brain surgery. These final safety and feasibility data from the first in-human SWITCH study indicate that it is possible to record neural signals from a blood vessel. The favorable safety profile could promote wider and more rapid translation of BCI to people with paralysis. Trial Registration: ClinicalTrials.gov Identifier: NCT03834857.


Assuntos
Interfaces Cérebro-Computador , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Encéfalo , Córtex Cerebral , Paralisia/etiologia , Estudos Prospectivos
2.
J Neurointerv Surg ; 13(2): 102-108, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33115813

RESUMO

BACKGROUND: Implantable brain-computer interfaces (BCIs), functioning as motor neuroprostheses, have the potential to restore voluntary motor impulses to control digital devices and improve functional independence in patients with severe paralysis due to brain, spinal cord, peripheral nerve or muscle dysfunction. However, reports to date have had limited clinical translation. METHODS: Two participants with amyotrophic lateral sclerosis (ALS) underwent implant in a single-arm, open-label, prospective, early feasibility study. Using a minimally invasive neurointervention procedure, a novel endovascular Stentrode BCI was implanted in the superior sagittal sinus adjacent to primary motor cortex. The participants undertook machine-learning-assisted training to use wirelessly transmitted electrocorticography signal associated with attempted movements to control multiple mouse-click actions, including zoom and left-click. Used in combination with an eye-tracker for cursor navigation, participants achieved Windows 10 operating system control to conduct instrumental activities of daily living (IADL) tasks. RESULTS: Unsupervised home use commenced from day 86 onwards for participant 1, and day 71 for participant 2. Participant 1 achieved a typing task average click selection accuracy of 92.63% (100.00%, 87.50%-100.00%) (trial mean (median, Q1-Q3)) at a rate of 13.81 (13.44, 10.96-16.09) correct characters per minute (CCPM) with predictive text disabled. Participant 2 achieved an average click selection accuracy of 93.18% (100.00%, 88.19%-100.00%) at 20.10 (17.73, 12.27-26.50) CCPM. Completion of IADL tasks including text messaging, online shopping and managing finances independently was demonstrated in both participants. CONCLUSION: We describe the first-in-human experience of a minimally invasive, fully implanted, wireless, ambulatory motor neuroprosthesis using an endovascular stent-electrode array to transmit electrocorticography signals from the motor cortex for multiple command control of digital devices in two participants with flaccid upper limb paralysis.


Assuntos
Atividades Cotidianas , Interfaces Cérebro-Computador , Neuroestimuladores Implantáveis , Córtex Motor/fisiologia , Paralisia/terapia , Índice de Gravidade de Doença , Atividades Cotidianas/psicologia , Idoso , Interfaces Cérebro-Computador/psicologia , Estudos de Viabilidade , Feminino , Humanos , Imageamento Tridimensional/métodos , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Paralisia/diagnóstico por imagem , Paralisia/fisiopatologia , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA