Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Indoor Air ; 31(4): 977-988, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33586827

RESUMO

Children are particularly vulnerable to many classes of the volatile organic compounds (VOCs) detected in indoor environments. The negative health impacts associated with chronic and acute exposures of the VOCs might lead to health issues such as genetic damage, cancer, and disorder of nervous systems. In this study, 40 VOCs including aldehydes and ketones, aliphatic hydrocarbons, esters, aromatic hydrocarbons, cyclic terpenes, alcohols, and glycol ethers were identified and qualified in different locations at the University of Missouri (MU) Child Development Laboratory (CDL) in Columbia, Missouri. Our results suggested that the concentrations of the VOCs varied significantly among classrooms, hallways, and playground. The VOCs emitted from personal care and cleaning products had the highest indoor levels (2-ethylhexanol-1, 3-carene, homomenthyl salicylate with mean concentration of 5.15 µg/m3 , 1.57 µg/m3 , and 1.47 µg/m3 , respectively). A cancer risk assessment was conducted, and none of the 95th percentile dose estimates exceeded the age-specific no significant risk levels (NSRL) in all classrooms. Dimensionless toxicity index scores were calculated for all VOCs using a novel web-based framework called Toxicological Prioritization Index (ToxPi), which integrates multiple sources of toxicity data. According to the method, homomenthyl salicylate, benzothiazole, 2-ethylhexyl salicylate, hexadecane, and tridecane exhibited diverse toxicity profiles and ranked as the five most toxic indoor VOCs. The findings of this study provide critical information for policy makers and early education professionals to mitigate the potentially negative health impacts of indoor VOCs in the childcare facilities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Criança , Monitoramento Ambiental , Humanos , Medição de Risco , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/toxicidade
2.
Sci Total Environ ; 748: 142236, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33039138

RESUMO

The rise of hydraulic fracturing and unconventional oil and gas (UOG) exploration in the United States has increased public concerns for water contamination induced from hydraulic fracturing fluids and associated wastewater spills. Herein, we collected surface and groundwater samples across Garfield County, Colorado, a drilling-dense region, and measured endocrine bioactivities, geochemical tracers of UOG wastewater, UOG-related organic contaminants in surface water, and evaluated UOG drilling production (weighted well scores, nearby well count, reported spills) surrounding sites. Elevated antagonist activities for the estrogen, androgen, progesterone, and glucocorticoid receptors were detected in surface water and associated with nearby shale gas well counts and density. The elevated endocrine activities were observed in surface water associated with medium and high UOG production (weighted UOG well score-based groups). These bioactivities were generally not associated with reported spills nearby, and often did not exhibit geochemical profiles associated with UOG wastewater from this region. Our results suggest the potential for releases of low-saline hydraulic fracturing fluids or chemicals used in other aspects of UOG production, similar to the chemistry of the local water, and dissimilar from defined spills of post-injection wastewater. Notably, water collected from certain medium and high UOG production sites exhibited bioactivities well above the levels known to impact the health of aquatic organisms, suggesting that further research to assess potential endocrine activities of UOG operations is warranted.


Assuntos
Água Subterrânea , Fraturamento Hidráulico , Poluentes Químicos da Água , Colorado , Gás Natural , Campos de Petróleo e Gás , Estados Unidos , Águas Residuárias , Poluentes Químicos da Água/análise , Recursos Hídricos
3.
Front Pharmacol ; 10: 1059, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31607915

RESUMO

Black walnut (Juglans nigra L.) is an excellent source of health-promoting compounds. Consumption of black walnuts has been linked to many health benefits (e.g., anti-inflammatory) stemming from its phytochemical composition and medicinal properties, but these effects have not been systematically studied or characterized. In this study, potential anti-inflammatory compounds found in kernel extracts of 10 black walnut cultivars were putatively identified using a metabolomic profiling analysis, revealing differences in potential anti-inflammatory capacities among examined cultivars. Five cultivars were examined for activities in the human promonocytic cell line U-937 by evaluating the effects of the extracts on the expression of six human inflammatory cytokines/chemokines using a bead-based, flow cytometric multiplex assay. The methanolic extracts of these cultivars were added at four concentrations (0.1, 0.3, 1, and 10 mg/ml) either before and after the addition of lipopolysaccharide (LPS) to human U-937 cells to examine their effect on cytokine production. Results from cytotoxicity and viability assays revealed that the kernel extracts had no toxic effect on the U-937 cells. Of the 13 cytokines [interleukin (IL)-1ß, tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein (MCP)-1, IL-6, IL-8, IL-10, IL-12, IL-17, IL-18, IL-23, IL-33, interferon (IFN)-α, IFN-γ] measured, only six were detected under the culture conditions. The production of the six detected cytokines by phorbol 12-myristate 13-acetate (PMA)-differentiated, LPS-stimulated U-937 was significantly inhibited by the kernel extracts from two cultivars Surprise and Sparrow when the extracts were added before the addition of LPS. Other cultivars (Daniel, Mystry, and Sparks) showed weak or no significant effects on cytokine production. In contrast, no inhibitory effect was observed on the production of cytokines by PMA-differentiated, LPS-stimulated U-937 when the kernel extracts were added after the addition of LPS. The findings suggest that the extracts from certain black walnut cultivars, such as Sparrow and Surprise, are promising biological candidates for potentially decreasing the severity of inflammatory disease.

4.
Rev Environ Health ; 34(1): 35-56, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30844763

RESUMO

Background Understanding the role of environmental toxicant exposure on children's development is an important area of inquiry in order to better understand contextual factors that shape development and ultimately school readiness among young children. There is evidence suggesting negative links between exposure to environmental toxicants and negative physical health outcomes (i.e. asthma, allergies) in children. However, research on children's exposure to environmental toxicants and other developmental outcomes (cognitive, socioemotional) is limited. Objectives The goal of the current review was to assess the existing literature on the links between environmental toxicants (excluding heavy metals) and children's cognitive, socioemotional, and behavioral development among young children. Methods This literature review highlights research on environmental toxicants (i.e. pesticide exposure, bisphenol A, polycyclic aromatic hydrocarbons, tobacco smoke, polychlorinated biphenyls, flame retardants, phthalates and gas pollutions) and children's development across multiple domains. Results The results highlight the potential risk of exposure to multiple environmental toxicants for young children's cognitive and socioemotional development. Discussion Discussion will focus on the role of environmental toxicants in the cognitive and socioemotional development of young children, while highlighting gaps in the existing literature.


Assuntos
Sucesso Acadêmico , Comportamento Infantil/efeitos dos fármacos , Desenvolvimento Infantil/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Substâncias Perigosas/efeitos adversos , Criança , Pré-Escolar , Emoções , Exposição Ambiental/classificação , Feminino , Substâncias Perigosas/classificação , Humanos , Lactente , Recém-Nascido , Masculino , Comportamento Social
5.
Arch Environ Contam Toxicol ; 75(2): 247-258, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29623359

RESUMO

Unconventional oil and natural gas (UOG) operations couple horizontal drilling with hydraulic fracturing to access previously inaccessible fossil fuel deposits. Hydraulic fracturing, a common form of stimulation, involves the high-pressure injection of water, chemicals, and sand to fracture the target layer and release trapped natural gas and/or oil. Spills and/or discharges of wastewater have been shown to impact surface, ground, and drinking water. The goals of this study were to characterize the endocrine activities and measure select organic contaminants in groundwater from conventional oil and gas (COG) and UOG production regions of Wyoming. Groundwater samples were collected from each region, solid-phase extracted, and assessed for endocrine activities (estrogen, androgen, progesterone, glucocorticoid, and thyroid receptor agonism and antagonism), using reporter gene assays in human endometrial cells. Water samples from UOG and conventional oil areas exhibited greater ER antagonist activities than water samples from conventional gas areas. Samples from UOG areas tended to exhibit progesterone receptor antagonism more often, suggesting there may be a UOG-related impact on these endocrine activities. We also report UOG-specific contaminants in Pavillion groundwater extracts, and these same chemicals at high concentrations in a local UOG wastewater sample. A unique suite of contaminants was observed in groundwater from a permitted drinking water well at a COG well pad and not at any UOG sites; high levels of endocrine activities (most notably, maximal estrogenic activity) were noted there, suggesting putative impacts on endocrine bioactivities by COG. As such, we report two levels of evidence for groundwater contamination by both UOG and COG operations in Wyoming.


Assuntos
Disruptores Endócrinos/análise , Água Subterrânea/análise , Campos de Petróleo e Gás , Poluentes Químicos da Água/análise , Linhagem Celular , Disruptores Endócrinos/toxicidade , Endométrio/citologia , Monitoramento Ambiental , Feminino , Água Subterrânea/química , Humanos , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Progesterona/antagonistas & inibidores , Testes de Toxicidade/métodos , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/toxicidade , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade , Wyoming
6.
Endocrinology ; 156(12): 4458-73, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26465197

RESUMO

Oil and natural gas operations have been shown to contaminate surface and ground water with endocrine-disrupting chemicals. In the current study, we fill several gaps in our understanding of the potential environmental impacts related to this process. We measured the endocrine-disrupting activities of 24 chemicals used and/or produced by oil and gas operations for five nuclear receptors using a reporter gene assay in human endometrial cancer cells. We also quantified the concentration of 16 of these chemicals in oil and gas wastewater samples. Finally, we assessed reproductive and developmental outcomes in male C57BL/6J mice after the prenatal exposure to a mixture of these chemicals. We found that 23 commonly used oil and natural gas operation chemicals can activate or inhibit the estrogen, androgen, glucocorticoid, progesterone, and/or thyroid receptors, and mixtures of these chemicals can behave synergistically, additively, or antagonistically in vitro. Prenatal exposure to a mixture of 23 oil and gas operation chemicals at 3, 30, and 300 µg/kg · d caused decreased sperm counts and increased testes, body, heart, and thymus weights and increased serum testosterone in male mice, suggesting multiple organ system impacts. Our results suggest possible adverse developmental and reproductive health outcomes in humans and animals exposed to potential environmentally relevant levels of oil and gas operation chemicals.


Assuntos
Peso Corporal/efeitos dos fármacos , Disruptores Endócrinos/farmacologia , Fraturamento Hidráulico , Efeitos Tardios da Exposição Pré-Natal , Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos , Águas Residuárias/química , Animais , Feminino , Masculino , Camundongos , Tamanho do Órgão , Gravidez , Receptores Androgênicos/efeitos dos fármacos , Receptores de Estrogênio/efeitos dos fármacos , Receptores de Glucocorticoides/efeitos dos fármacos , Receptores de Progesterona/efeitos dos fármacos , Receptores dos Hormônios Tireóideos/efeitos dos fármacos , Contagem de Espermatozoides , Motilidade dos Espermatozoides/efeitos dos fármacos , Testículo/patologia , Testosterona/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA