Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(5): e0156296, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27231876

RESUMO

Human vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis and plays a central role in the process of tumor growth and metastatic dissemination. Escherichia coli is one of the most common expression systems used for the production of recombinant proteins; however, expression of human VEGF in E. coli has proven difficult because the E. coli-expressed VEGF tends to be misfolded and forms inclusion bodies, resulting in poor solubility. In this study, we successfully produced semi-preparative amounts of soluble bioactive human VEGF165 (hVEGF). We created seven N-terminal fusion tag constructs with hexahistidine (His6), thioredoxin (Trx), glutathione S-transferase (GST), maltose-binding protein (MBP), N-utilization substance protein A (NusA), human protein disulfide isomerase (PDI), and the b'a' domain of PDI (PDIb'a'), and tested each construct for soluble overexpression in E. coli. We found that at 18°C, 92.8% of the MBP-tagged hVEGF to be soluble and that this tag significantly increased the protein's solubility. We successfully purified 0.8 mg of pure hVEGF per 500 mL cell culture. The purified hVEGF is stable after tag cleavage, contains very low levels of endotoxin, and is 97.6% pure. Using an Flk1+ mesodermal precursor cell (MPC) differentiation assay, we show that the purified hVEGF is not only bioactive but has similar bioactivity to hVEGF produced in mammalian cells. Previous reports on producing hVEGF in E. coli have all been based on refolding of the protein from inclusion bodies. To our knowledge, this is the first report on successfully expressing and purifying soluble hVEGF in E. coli.


Assuntos
Escherichia coli/genética , Proteínas Ligantes de Maltose/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/isolamento & purificação , Animais , Células CHO , Cricetinae , Cricetulus , Expressão Gênica , Humanos , Plasmídeos/genética , Proteínas Recombinantes de Fusão/química , Solubilidade , Fator A de Crescimento do Endotélio Vascular/química
2.
Toxicon ; 92: 157-65, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25448388

RESUMO

Crotamine is a peptide toxin found in the venom of the rattlesnake Crotalus durissus terrificus. Interestingly, crotamine demonstrates promising anticancer, antimicrobial, and antifungal activities. The crotamine peptide can also deliver plasmids into rapidly dividing cells, such as cancer and stem cells, and demonstrates potent analgesic effects. Efficiently producing crotamine in mammalian cells is difficult because it is both cell-permeable and cytotoxic. Prokaryotic expression of this peptide is also difficult to maintain because it does not fold properly in the cytoplasm, resulting in aggregation and in the formation of inclusion bodies. In our current study, we show for the first time that N-terminal fusion with three protein tags-N-utilization substance protein A (NusA), protein disulfide isomerase b'a' domain (PDIb'a'), and maltose-binding protein (MBP)-enables the soluble overexpression of crotamine in the cytoplasm of Escherichia coli. MBP-tagged crotamine was purified using Ni affinity, anion exchange, and MBP chromatography. The tag was cleaved using TEV protease, and the final product was pure on a silver-stained gels. In total, 0.9 mg pure crotamine was obtained from each liter of bacterial culture with endotoxin level approximately 0.15 EU/µg, which is low enough to use in biomedical applications. The identity and intramolecular disulfide bonds were confirmed using MALDI-TOF MS analysis. Purified crotamine inhibited the hKv1.3 channel (but not hKv1.5) in a dose-dependent manner with IC50 value of 67.2 ± 44.7 nM (n = 10), indicating the correct protein folding. The crotamine product fused with MBP at its N-terminus also inhibited the hKv1.3 channel, suggesting that the N-terminus is not involved in the channel binding of the toxin.


Assuntos
Venenos de Crotalídeos/análise , Canal de Potássio Kv1.3/antagonistas & inibidores , Proteínas Ligantes de Maltose/metabolismo , Venenos de Crotalídeos/isolamento & purificação , Venenos de Crotalídeos/metabolismo , Escherichia coli , Concentração Inibidora 50 , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA