Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 13(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36984774

RESUMO

Cows in the peripartal period undergo changes in thyroid hormones and are susceptible to lipomobilization and/or oxidative stress. The addition of chestnut tannins as polyphenolic compounds in the diet may improve feed efficiency and prevent oxidative stress-related health disorders in transition cows. However, the relationship between chestnut tannin supplementation and thyroid function, which plays an important role in metabolic regulation, has not been investigated in dairy cows. This study was conducted to investigate the effects of chestnut tannin supplementation during the close-up period on thyroid status and to evaluate the interaction between thyroid hormones and oxidative stress biomarkers in prepartum dairy cows. Forty multiparous Holstein cows were fed either a diet containing chestnut tannins (CNTs, n = 20, 1.96 g chestnut tannins/kg feed, dry matter) or a non-supplemented diet (CON, n = 20) during the last 25 ± 2 days of gestation. Blood samples were collected on the first day of study (before chestnut tannin supplementation) and d 5 before parturition to measure hormonal and oxidative stress indices. Serum concentrations of T3 (p = 0.04) and T4 (p = 0.05) were higher in CNT cows than in the CON group on day 5 before parturition. Thyroid status of CNT cows was associated with higher serum total antioxidant capacity (T-AOC, p < 0.01), activities of superoxide dismutase (SOD, p = 0.03) and glutathione peroxidase (GPx, p = 0.01), and reduced glutathione concentration (GSH, p = 0.05). Serum thiobarbituric acid reactive substances (TBARS) were lower (p = 0.04) which was associated with lower aspartate aminotransferase (AST, p = 0.02), and lactate dehydrogenase (LDH, p = 0.01) activities in the CNT than in the CON group. Estradiol and progesterone did not differ between CNT and CON cows. Chestnut tannin supplementation improves antioxidant protection, prevents oxidation-reduction processes, reduces the degree of liver cell membrane damage, and protects thyroid tissue from damage, allowing higher T3 and T4 synthesis. Considering the importance of the thyroid hormone status before parturition, mechanisms of thyroid hormone regulation in CNT-supplemented dairy cows require more detailed investigations.

2.
Res Vet Sci ; 150: 189-194, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-35842950

RESUMO

A number of alterations have been identified in lipid metabolism within adipose tissue and liver in obesity. Less is known about the capacity of skeletal muscle for the metabolism of fatty acids in obesity-related insulin resistance, though it is evident that dry cow muscles may contain increased triglyceride content. The current study was therefore undertaken to evaluate the skeletal muscle expression of proteins of the fatty acid metabolism in dry cows with different body condition scores (BCS). Sixteen Holstein-Friesian close-up cows were divided into 2 equal groups based on their BCS as optimal (3.25 ≤ BCS ≤ 3.5) and high (4.0 ≤ BCS ≤ 4.25). Blood samples collection and skeletal muscle biopsies were carried out at day 10 before calving. Blood serum was assayed for concentration of resistin using a bovine specific ELISA. Protein expression of insulin receptor beta subunit (IRß), glucose transporter 4 (GLUT4), fatty acid translocase (FAT/CD36), fatty acid transporter 1 (FATP1), carnitine palmitoyltransferase 1 (CPT1), AMP-acitvated protein kinase (AMPK) and lipin 1 were analyzed in semitendinosus muscle by immunoblot. Resistin differed non-significantly between high-BCS and optimal-BCS cows. Insulin-resistant lipid metabolism in obese cows was paralleled with increased skeletal muscle expression of lipin 1 and GLUT4, and decreased expression of IRß and FATP1. These data suggest that in obesity-related insulin resistance, metabolic capacity in dry cow skeletal muscles appears to be organized towards the synthesis of signaling intermediates rather than fatty acids oxidation and that altered fatty acid uptake does not contribute to this disposition.


Assuntos
Doenças dos Bovinos , Resistência à Insulina , Animais , Antígenos CD36/metabolismo , Bovinos , Doenças dos Bovinos/metabolismo , Ácidos Graxos/metabolismo , Feminino , Insulina , Resistência à Insulina/fisiologia , Lactação/fisiologia , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Obesidade/veterinária , Compostos Orgânicos , Resistina/metabolismo
3.
Biol Trace Elem Res ; 180(2): 223-232, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28378114

RESUMO

The objective of this study was to investigate the effects of peroral administration of chromium-enriched yeast on glucose tolerance in Holstein calves, assessed by insulin signaling pathway molecule determination and intravenous glucose tolerance test (IVGTT). Twenty-four Holstein calves, aged 1 month, were chosen for the study and divided into two groups: the PoCr group (n = 12) that perorally received 0.04 mg of Cr/kg of body mass daily, for 70 days, and the NCr group (n = 12) that received no chromium supplementation. Skeletal tissue samples from each calf were obtained on day 0 and day 70 of the experiment. Chromium supplementation increased protein content of the insulin ß-subunit receptor, phosphorylation of insulin receptor substrate 1 at Tyrosine 632, phosphorylation of Akt at Serine 473, glucose transporter-4, and AMP-activated protein kinase in skeletal muscle tissue, while phosphorylation of insulin receptor substrate 1 at Serine 307 was not affected by chromium treatment. Results obtained during IVGTT, which was conducted on days 0, 30, 50, and 70, suggested an increased insulin sensitivity and, consequently, a better utilization of glucose in the PoCr group. Lower basal concentrations of glucose and insulin in the PoCr group on days 30 and 70 were also obtained. Our results indicate that chromium supplementation improves glucose utilization in calves by enhancing insulin intracellular signaling in the skeletal muscle tissue.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Cromo/uso terapêutico , Intolerância à Glucose/veterinária , Resistência à Insulina , Músculo Esquelético/metabolismo , Transdução de Sinais , Fermento Seco/uso terapêutico , Animais , Animais Endogâmicos , Biópsia/veterinária , Bovinos , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Indústria de Laticínios , Feminino , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Intolerância à Glucose/prevenção & controle , Transportador de Glucose Tipo 4/agonistas , Transportador de Glucose Tipo 4/metabolismo , Músculos Isquiossurais , Proteínas Substratos do Receptor de Insulina/agonistas , Proteínas Substratos do Receptor de Insulina/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/patologia , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/agonistas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/agonistas , Receptor de Insulina/metabolismo , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA