Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 21(3)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36976226

RESUMO

Alginate is a natural polymer of marine origin and, due to its exceptional properties, has great importance as an essential component for the preparation of hydrogels and scaffolds for biomedical applications. The design of biologically interactive hydrogels and scaffolds with advanced, expected and required properties are one of the key issues for successful outcomes in the healing of injured tissues. This review paper presents the multifunctional biomedical applications of alginate-based hydrogels and scaffolds in selected areas, highlighting the key effect of alginate and its influence on the essential properties of the selected biomedical applications. The first part covers scientific achievements for alginate in dermal tissue regeneration, drug delivery systems, cancer treatment, and antimicrobials. The second part is dedicated to our scientific results obtained for the research opus of hydrogel materials for scaffolds based on alginate in synergy with different materials (polymers and bioactive agents). Alginate has proved to be an exceptional polymer for combining with other naturally occurring and synthetic polymers, as well as loading bioactive therapeutic agents to achieve dermal, controlled drug delivery, cancer treatment, and antimicrobial purposes. Our research was based on combinations of alginate with gelatin, 2-hydroxyethyl methacrylate, apatite, graphene oxide and iron(III) oxide, as well as curcumin and resveratrol as bioactive agents. Important features of the prepared scaffolds, such as morphology, porosity, absorption capacity, hydrophilicity, mechanical properties, in vitro degradation, and in vitro and in vivo biocompatibility, have shown favorable properties for the aforementioned applications, and alginate has been an important link in achieving these properties. Alginate, as a component of these systems, proved to be an indispensable factor and played an excellent "role" in the optimal adjustment of the tested properties. This study provides valuable data and information for researchers and demonstrates the importance of the role of alginate as a biomaterial in the design of hydrogels and scaffolds that are powerful medical "tools" for biomedical applications.


Assuntos
Hidrogéis , Engenharia Tecidual , Engenharia Tecidual/métodos , Alginatos , Compostos Férricos , Alicerces Teciduais , Polímeros
2.
Int J Endocrinol ; 2022: 4842316, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081621

RESUMO

There is a rising incidence of infertility worldwide, and many couples experience difficulties conceiving nowadays. Thyroid autoimmunity (TAI) is recognized as one of the major female infertility causes related to a diminished ovarian reserve and potentially impaired oocyte maturation and embryo development, causing adverse pregnancy outcomes. Growing evidence has highlighted its impact on spontaneously achieved pregnancy and pregnancy achieved by in vitro fertilization. Despite the influence of thyroid hormones on the male reproductive system, there is insufficient data on the association between TAI and male infertility. In past years, significant progress has been achieved in cell and gene therapies as emerging treatment options for infertility. Cell therapies utilize living cells to restore healthy tissue microenvironment and homeostasis and usually involve platelet-rich plasma and various stem cells. Using stem cells as therapeutic agents has many advantages, including simple sampling, abundant sources, poor immunogenicity, and elimination of ethical concerns. Mesenchymal Stem Cells (MSCs) represent a heterogeneous fraction of self-renewal, multipotent non-hematopoietic stem cells that display profound immunomodulatory and immunosuppressive features and promising therapeutic effects. Infertility has a genetic component in about half of all cases, although most of its genetic causes are still unknown. Hence, it is essential to identify genes involved in meiosis, DNA repair, ovarian development, steroidogenesis, and folliculogenesis, as well as those involved in spermatogenesis in order to develop potential gene therapies for infertility. Despite advances in therapy approaches such as biological agents, autoimmune disorders remain impossible to cure. Recent research demonstrates the remarkable therapeutic effectiveness of MSCs in a wide array of autoimmune diseases. TAI is one of many autoimmune disorders that can benefit from the use of MSCs, which can be derived from bone marrow and adipose tissue. Cell and gene therapies hold great potential for treating autoimmune conditions, although further research is still needed.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36612810

RESUMO

Peri-implant diseases are an emerging public health problem, and it's considered that limitations of standard diagnostics play the role herein. The study objective was the estimation of pathological bone resorption at clinical and biological level in patients with peri-implant mucositis (PIM) and peri-implantitis (PI) before and 6 months after standard treatment and to compare them with healthy controls (HC). The split-mouth interventional study included 60 patients affected with PIM or PI. Patients that also presented at least one more HC were enrolled in the study and underwent standard non-surgical and surgical treatment, respectively. Standard clinical parameters and soluble levels of RANKL were measured in peri-implant crevicular fluid baseline and 6 months following treatment. Clinical parameters and RANKL significantly decreased following treatment in PIM and PI. However, bleeding on probing and probing depth remained significantly increased when compared to HC. RANKL answered requests for biomarker of peri-implant diseases, its baseline levels were significantly increased in PIM and PI, they decreased following treatment and reached HC in peri-implantitis, while in PIM RANKL remained significantly increased. Presence of pathological bone resorption in patients lacked its clinical signs, and respective persistence following treatment suggest the need for biomarker-supported diagnosis for timely diagnosis of peri-implantitis and appropriate orientation of respective management strategies.


Assuntos
Reabsorção Óssea , Peri-Implantite , Humanos , Peri-Implantite/diagnóstico , Saúde Pública , Índice Periodontal
4.
Environ Sci Pollut Res Int ; 27(27): 33903-33915, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32535828

RESUMO

In this study, few different evaluation concepts were used for the assessment of genotoxic potential at the stretch of the Danube River identified as a significant hotspot of pollution originated through the untreated wastewaters. Three sites were chosen: one site upstream of the wastewater outlet in Novi Sad (Serbia), one at the outlet of wastewaters, and one site few kilometer downstream. Ex situ approach comprised prokaryotic SOS/umuC test on Salmonella typhimurium TA1535/pSK1005 and comet assay on human hepatoma cell line (HepG2). In situ approach was based on the active monitoring (cage approach) using freshwater mussels Sinanodonta woodiana and fish Cyprinus carpio. The comet and micronucleus assays were selected for evaluation of DNA damage in mussel haemocytes and fish blood cells. Within the ex situ part of the study, our results indicated that the eukaryotic model system is more sensitive compared to the prokaryotic one. In situ bioassays are recommended for obtaining a better insight into ecosystem status and in the case of our study the complete insight of genotoxic pressure. However, the choice of animals as bioindicators also has a significant impact on the quality of the obtained information. Differential response between fish and mussels was observed at the highly polluted site suggesting possible involvement of additional protective mechanism such as valve closure in mussels.


Assuntos
Carpas , Poluentes Químicos da Água , Animais , Bioensaio , Monitoramento Biológico , Ensaio Cometa , Dano ao DNA , Ecossistema , Monitoramento Ambiental , Humanos , Testes para Micronúcleos , Sérvia
5.
Drug Chem Toxicol ; 43(5): 522-530, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30257571

RESUMO

Tert-butylquinone (TBQ) and its alkylamino and aralkylamino derivatives are of high interest as a potential antitumor agent. Therefore, it was necessary to investigate if the compounds exert undesirable activities such as interaction with DNA molecule which could result in negative side effects in the case of their use in the diseases treatment. The major aim of this study was to investigate genotoxic potential of TBQ and selected derivatives in an acellular model by using plasmid DNA, in the prokaryotic model by the SOS/umuC assay in Salmonella typhimurium TA1535/pSK1002 and in eukaryotic models by using comet assay in human fetal lung cell line (MRC-5) and human liver cancer cell line (HepG2). Results indicated that in the acellular model TBQ and its derivatives do not interact with plasmid pUC19. In the prokaryotic model, only TBQ exerted weak genotoxic potential and only at highly cytotoxic concentrations. In eukaryotic models, genotoxic potential was detected mainly at the highest concentrations of the tested substances but the effect was lower in both cell lines in comparison with benzo[a]pyrene and etoposide which were used as positive controls. Weak genotoxic potential of tested compounds recommends them as good candidates for further testing in development of new antitumor agents.


Assuntos
Benzoquinonas/toxicidade , Dano ao DNA , Células Cultivadas , Ensaio Cometa , Células Hep G2 , Humanos , Plasmídeos/genética , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA