Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Angiogenesis ; 27(1): 37-49, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37493987

RESUMO

Modern drug development increasingly requires comprehensive models that can be utilized in the earliest stages of compound and target discovery. Here we report a phenotypic screening exercise in a high-throughput Organ-on-a-Chip setup. We assessed the inhibitory effect of 1537 protein kinase inhibitors in an angiogenesis assay. Over 4000 micro-vessels were grown under perfusion flow in microfluidic chips, exposed to a cocktail of pro-angiogenic factors and subsequently exposed to the respective kinase inhibitors. Efficacy of compounds was evaluated by reduced angiogenic sprouting, whereas reduced integrity of the main micro-vessel was taken as a measure for toxicity. The screen yielded 53 hits with high anti-angiogenicity and low toxicity, of which 44 were previously unassociated with angiogenic pathways. This study demonstrates that Organ-on-a-Chip models can be screened in high numbers to identify novel compounds and targets. This will ultimately reduce bias in early-stage drug development and increases probability to identify first in class compounds and targets for today's intractable diseases.


Assuntos
Angiogênese , Antineoplásicos , Humanos , Sistemas Microfisiológicos , Antineoplásicos/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia
2.
Sci Rep ; 12(1): 16930, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209279

RESUMO

In early systemic sclerosis (Scleroderma, SSc), the vasculature is impaired. Although the exact etiology of endothelial cell damage in SSc remains unclear, it is hypothesized that endothelial to mesenchymal transition (EndoMT) plays a key role. To perform physiologically relevant angiogenic studies, we set out to develop an angiogenesis-on-a-chip platform that is suitable for assessing disease parameters that are relevant to SSc and other vasculopathies. In the model, we substituted Fetal Bovine Serum (FBS) with Human Serum without impairing the stability of the culture. We showed that 3D microvessels and angiogenic factor-induced sprouts exposed to key pro-inflammatory and pro-fibrotic cytokines (TNFα and TGFß) undergo structural alterations consisting of destructive vasculopathy (loss of small vessels). We also showed that these detrimental effects can be prevented by compound-mediated inhibition of TGFß-ALK5 signaling or addition of a TNFα neutralizing antibody to the 3D cultures. This demonstrates that our in vitro model is suitable for compound testing and identification of new drugs that can protect from microvascular destabilization or regression in disease-mimicking conditions. To support this, we demonstrated that sera obtained from SSc patients can exert an anti-angiogenic effect on the 3D vessel model, opening the doors to screening for potential SSc drugs, enabling direct patient translatability and personalization of drug treatment.


Assuntos
Escleroderma Sistêmico , Fator de Necrose Tumoral alfa , Indutores da Angiogênese , Anticorpos Neutralizantes , Humanos , Dispositivos Lab-On-A-Chip , Microvasos , Neovascularização Patológica , Soroalbumina Bovina , Fator de Crescimento Transformador beta
3.
Kidney360 ; 3(2): 217-231, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35373131

RESUMO

Background: Renal ischemia/reperfusion injury (rIRI) is one of the major causes of AKI. Although animal models are suitable for investigating systemic symptoms of AKI, they are limited in translatability. Human in vitro models are crucial in giving mechanistic insights into rIRI; however, they miss out on crucial aspects such as reperfusion injury and the multitissue aspect of AKI. Methods: We advanced the current renal proximal tubule-on-a-chip model to a coculture model with a perfused endothelial vessel separated by an extracellular matrix. The coculture was characterized for its three-dimensional structure, protein expression, and response to nephrotoxins. Then, rIRI was captured through control of oxygen levels, nutrient availability, and perfusion flow settings. Injury was quantified through morphologic assessment, caspase-3/7 activation, and cell viability. Results: The combination of low oxygen, reduced glucose, and interrupted flow was potent to disturb the proximal tubules. This effect was strongly amplified upon reperfusion. Endothelial vessels were less sensitive to the ischemia-reperfusion parameters. Adenosine treatment showed a protective effect on the disruption of the epithelium and on the caspase-3/7 activation. Conclusions: A human in vitro rIRI model was developed using a coculture of a proximal tubule and blood vessel on-a-chip, which was used to characterize the renoprotective effect of adenosine. The robustness of the model and assays in combination with the throughput of the platform make it ideal to advance pathophysiological research and enable the development of novel therapeutic modalities.


Assuntos
Injúria Renal Aguda , Dispositivos Lab-On-A-Chip , Injúria Renal Aguda/prevenção & controle , Animais , Humanos , Isquemia/complicações , Túbulos Renais/metabolismo , Reperfusão/efeitos adversos
4.
Methods Mol Biol ; 2373: 87-105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34520008

RESUMO

The study of epithelial barrier properties in the human body is of paramount interest to a range of disciplines, including disease modeling, drug transport studies, toxicology, developmental biology, and regenerative biology. Current day in vitro studies largely rely on growing epithelial cells in a static environment on membrane cell culture inserts. With the advancement of microfluidic and organ-on-a-chip techniques it became possible to culture 3D intestinal tubules directly against an extracellular matrix (ECM) under flow and without the need for artificial membranes. Here we describe detailed protocols for culturing epithelial tubules in a high-throughput format, assessing their permeability and marker expression. The platform harbors 40 independent microfluidic chips in a microtiter plate format. The resulting 40 epithelial tubules are analyzed in parallel using a high-content microscopy. Protocols described here allow for adoption and routine application of microfluidic techniques by nonspecialized end-users.


Assuntos
Mucosa Intestinal , Dispositivos Lab-On-A-Chip , Técnicas de Cultura de Células , Células Epiteliais , Humanos , Microfluídica
5.
Fluids Barriers CNS ; 18(1): 59, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34906183

RESUMO

BACKGROUND: In ischemic stroke, the function of the cerebral vasculature is impaired. This vascular structure is formed by the so-called neurovascular unit (NVU). A better understanding of the mechanisms involved in NVU dysfunction and recovery may lead to new insights for the development of highly sought therapeutic approaches. To date, there remains an unmet need for complex human in vitro models of the NVU to study ischemic events seen in the human brain. METHODS: We here describe the development of a human NVU on-a-chip model using a platform that allows culture of 40 chips in parallel. The model comprises a perfused vessel of primary human brain endothelial cells in co-culture with induced pluripotent stem cell derived astrocytes and neurons. Ischemic stroke was mimicked using a threefold approach that combines chemical hypoxia, hypoglycemia, and halted perfusion. RESULTS: Immunofluorescent staining confirmed expression of endothelial adherens and tight junction proteins, as well as astrocytic and neuronal markers. In addition, the model expresses relevant brain endothelial transporters and shows spontaneous neuronal firing. The NVU on-a-chip model demonstrates tight barrier function, evidenced by retention of small molecule sodium fluorescein in its lumen. Exposure to the toxic compound staurosporine disrupted the endothelial barrier, causing reduced transepithelial electrical resistance and increased permeability to sodium fluorescein. Under stroke mimicking conditions, brain endothelial cells showed strongly reduced barrier function (35-fold higher apparent permeability) and 7.3-fold decreased mitochondrial potential. Furthermore, levels of adenosine triphosphate were significantly reduced on both the blood- and the brain side of the model (4.8-fold and 11.7-fold reduction, respectively). CONCLUSIONS: The NVU on-a-chip model presented here can be used for fundamental studies of NVU function in stroke and other neurological diseases and for investigation of potential restorative therapies to fight neurological disorders. Due to the platform's relatively high throughput and compatibility with automation, the model holds potential for drug compound screening.


Assuntos
Astrócitos , Células Endoteliais , Células-Tronco Pluripotentes Induzidas , AVC Isquêmico , Dispositivos Lab-On-A-Chip , Modelos Biológicos , Neurônios , Acoplamento Neurovascular , Humanos
6.
ACS Biomater Sci Eng ; 7(7): 3030-3042, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34185991

RESUMO

The lymphatic system is essential in maintaining tissue fluid homeostasis as well as antigen and immune cell transport to lymph nodes. Moreover, lymphatic vasculature plays an important role in various pathological processes, such as cancer. Fundamental to this research field are representative in vitro models. Here we present a microfluidic lymphatic vessel model to study lymphangiogenesis and its interaction with colon cancer organoids using a newly developed lymphatic endothelial cell (LEC) line. We generated immortalized human LECs by lentiviral transduction of human telomerase (hTERT) and BMI-1 expression cassettes into primary LECs. Immortalized LECs showed an increased growth potential, reduced senescence, and elongated lifespan with maintenance of typical LEC morphology and marker expression for over 12 months while remaining nontransformed. Immortalized LECs were introduced in a microfluidic chip, comprising a free-standing extracellular matrix, where they formed a perfusable vessel-like structure against the extracellular matrix. A gradient of lymphangiogenic factors over the extracellular matrix gel induced the formation of luminated sprouts. Adding mouse colon cancer organoids adjacent to the lymphatic vessel resulted in a stable long-lived coculture model in which cancer cell-induced lymphangiogenesis and cancer cell motility can be investigated. Thus, the development of a stable immortalized lymphatic endothelial cell line in a membrane-free, perfused microfluidic chip yields a highly standardized lymphangiogenesis and lymphatic vessel-tumor cell coculture assay.


Assuntos
Células Endoteliais , Vasos Linfáticos , Biologia , Técnicas de Cocultura , Humanos , Microfluídica
7.
Nat Protoc ; 16(4): 2023-2050, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33674788

RESUMO

Advanced in vitro kidney models are of great importance to the study of renal physiology and disease. Kidney tubuloids can be established from primary cells derived from adult kidney tissue or urine. Tubuloids are three-dimensional multicellular structures that recapitulate tubular function and have been used to study infectious, malignant, metabolic, and genetic diseases. For tubuloids to more closely represent the in vivo kidney, they can be integrated into an organ-on-a-chip system that has a more physiological tubular architecture and allows flow and interaction with vasculature or epithelial and mesenchymal cells from other organs. Here, we describe a detailed protocol for establishing tubuloid cultures from tissue and urine (1-3 weeks), as well as for generating and characterizing tubuloid cell-derived three-dimensional tubular structures in a perfused microfluidic multi-chip platform (7 d). The combination of the two systems yields a powerful in vitro tool that better recapitulates the complexity of the kidney tubule with donor-specific properties.


Assuntos
Túbulos Renais/crescimento & desenvolvimento , Dispositivos Lab-On-A-Chip , Organoides/crescimento & desenvolvimento , Perfusão , Técnicas de Cultura de Tecidos/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Fracionamento Celular , Criança , Pré-Escolar , Impedância Elétrica , Feminino , Corantes Fluorescentes/química , Humanos , Lactente , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Microfluídica , Pessoa de Meia-Idade , Ratos , Adulto Jovem
8.
Sci Rep ; 11(1): 2080, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483540

RESUMO

We report a method to generate a 3D motor neuron model with segregated and directed axonal outgrowth. iPSC-derived motor neurons are cultured in extracellular matrix gel in a microfluidic platform. Neurons extend their axons into an adjacent layer of gel, whereas dendrites and soma remain predominantly in the somal compartment, as verified by immunofluorescent staining. Axonal outgrowth could be precisely quantified and was shown to respond to the chemotherapeutic drug vincristine in a highly reproducible dose-dependent manner. The model was shown susceptible to excitotoxicity upon exposure with excess glutamate and showed formation of stress granules upon excess glutamate or sodium arsenite exposure, mimicking processes common in motor neuron diseases. Importantly, outgrowing axons could be attracted and repelled through a gradient of axonal guidance cues, such as semaphorins. The platform comprises 40 chips arranged underneath a microtiter plate providing both throughput and compatibility to standard laboratory equipment. The model will thus prove ideal for studying axonal biology and disease, drug discovery and regenerative medicine.


Assuntos
Axônios/fisiologia , Modelos Biológicos , Neurônios Motores/fisiologia , Neuritos , Animais , Antineoplásicos/farmacologia , Materiais Biocompatíveis , Células Cultivadas , Ácido Glutâmico/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Microfluídica , Neuritos/efeitos dos fármacos , Vincristina/farmacologia
9.
Int J Mol Sci ; 21(13)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645937

RESUMO

To advance pre-clinical vascular drug research, in vitro assays are needed that closely mimic the process of angiogenesis in vivo. Such assays should combine physiological relevant culture conditions with robustness and scalability to enable drug screening. We developed a perfused 3D angiogenesis assay that includes endothelial cells (ECs) from induced pluripotent stem cells (iPSC) and assessed its performance and suitability for anti-angiogenic drug screening. Angiogenic sprouting was compared with primary ECs and showed that the microvessels from iPSC-EC exhibit similar sprouting behavior, including tip cell formation, directional sprouting and lumen formation. Inhibition with sunitinib, a clinically used vascular endothelial growth factor (VEGF) receptor type 2 inhibitor, and 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), a transient glycolysis inhibitor, both significantly reduced the sprouting of both iPSC-ECs and primary ECs, supporting that both cell types show VEGF gradient-driven angiogenic sprouting. The assay performance was quantified for sunitinib, yielding a minimal signal window of 11 and Z-factor of at least 0.75, both meeting the criteria to be used as screening assay. In conclusion, we have developed a robust and scalable assay that includes physiological relevant culture conditions and is amenable to screening of anti-angiogenic compounds.


Assuntos
Inibidores da Angiogênese/farmacologia , Bioensaio/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Endotélio/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Endotélio/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Int J Mol Sci ; 21(14)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674311

RESUMO

Intestinal organoids have emerged as the new paradigm for modelling the healthy and diseased intestine with patient-relevant properties. In this study, we show directed differentiation of induced pluripotent stem cells towards intestinal-like phenotype within a microfluidic device. iPSCs are cultured against a gel in microfluidic chips of the OrganoPlate, in which they undergo stepwise differentiation. Cells form a tubular structure, lose their stem cell markers and start expressing mature intestinal markers, including markers for Paneth cells, enterocytes and neuroendocrine cells. Tubes develop barrier properties as confirmed by transepithelial electrical resistance (TEER). Lastly, we show that tubules respond to pro-inflammatory cytokine triggers. The whole procedure for differentiation lasts 14 days, making it an efficient process to make patient-specific organoid tubules. We anticipate the usage of the platform for disease modelling and drug candidate screening.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Intestinos/citologia , Biomarcadores/metabolismo , Células CACO-2 , Linhagem Celular , Linhagem Celular Tumoral , Citocinas/metabolismo , Enterócitos/citologia , Enterócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamação/metabolismo , Dispositivos Lab-On-A-Chip , Células Neuroendócrinas/citologia , Células Neuroendócrinas/metabolismo , Organoides/citologia , Organoides/metabolismo , Celulas de Paneth/citologia , Celulas de Paneth/metabolismo
11.
SLAS Technol ; 25(6): 585-597, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32576063

RESUMO

Development of efficient drugs and therapies for the treatment of inflammatory conditions in the intestine is often hampered by the lack of reliable, robust, and high-throughput in vitro and in vivo models. Current models generally fail to recapitulate key aspects of the intestine, resulting in low translatability to the human situation. Here, an immunocompetent 3D perfused intestine-on-a-chip platform was developed and characterized for studying intestinal inflammation. Forty independent polarized 3D perfused epithelial tubular structures were grown from cells of mixed epithelial origin, including enterocytes (Caco-2) and goblet cells (HT29-MTX-E12). Immune cells THP-1 and MUTZ-3, which can be activated, were added to the system and assessed for cytokine release. Intestinal inflammation was mimicked through exposure to tumor necrosis factor-α (TNFα) and interleukin (IL)-1ß. The effects were quantified by measuring transepithelial electrical resistance (TEER) and proinflammatory cytokine secretion on the apical and basal sides. Cytokines induced an inflammatory state in the culture, as demonstrated by the impaired barrier function and increased IL-8 secretion. Exposure to the known anti-inflammatory drug TPCA-1 prevented the inflammatory state. The model provides biological modularity for key aspects of intestinal inflammation, making use of well-established cell lines. This allows robust assays that can be tailored in complexity to serve all preclinical stages in the drug discovery and development process.


Assuntos
Mucosa Intestinal , Dispositivos Lab-On-A-Chip , Células CACO-2 , Humanos , Intestinos
12.
Int J Mol Sci ; 20(22)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726729

RESUMO

A common bottleneck in any drug development process is finding sufficiently accurate models that capture key aspects of disease development and progression. Conventional drug screening models often rely on simple 2D culture systems that fail to recapitulate the complexity of the organ situation. In this study, we show the application of a robust high throughput 3D gut-on-a-chip model for investigating hallmarks of inflammatory bowel disease (IBD). Using the OrganoPlate platform, we subjected enterocyte-like cells to an immune-relevant inflammatory trigger in order to recapitulate key events of IBD and to further investigate the suitability of this model for compound discovery and target validation activities. The induction of inflammatory conditions caused a loss of barrier function of the intestinal epithelium and its activation by increased cytokine production, two events observed in IBD physiopathology. More importantly, anti-inflammatory compound exposure prevented the loss of barrier function and the increased cytokine release. Furthermore, knockdown of key inflammatory regulators RELA and MYD88 through on-chip adenoviral shRNA transduction alleviated IBD phenotype by decreasing cytokine production. In summary, we demonstrate the routine use of a gut-on-a-chip platform for disease-specific aspects modeling. The approach can be used for larger scale disease modeling, target validation and drug discovery purposes.


Assuntos
Descoberta de Drogas , Doenças Inflamatórias Intestinais , Procedimentos Analíticos em Microchip , Modelos Biológicos , Células CACO-2 , Avaliação Pré-Clínica de Medicamentos , Técnicas de Inativação de Genes , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Dispositivos Lab-On-A-Chip , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
13.
Int J Mol Sci ; 20(18)2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31546820

RESUMO

Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most lethal cancers due to a high chemoresistance and poor vascularization, which results in an ineffective systemic therapy. PDAC is characterized by a high intratumoral pressure, which is not captured by current 2D and 3D in vitro models. Here, we demonstrated a 3D microfluidic interstitial flow model to mimic the intratumoral pressure in PDAC. We found that subjecting the S2-028 PDAC cell line to interstitial flow inhibits the proliferation, while maintaining a high viability. We observed increased gemcitabine chemoresistance, with an almost nine-fold higher EC50 as compared to a monolayer culture (31 nM versus 277 nM), and an alleviated expression and function of the multidrug resistance protein (MRP) family. In conclusion, we developed a 3D cell culture modality for studying intratissue pressure and flow that exhibits more predictive capabilities than conventional 2D cell culture and is less time-consuming, and more scalable and accessible than animal models. This increase in microphysiological relevance might support improved efficiency in the drug development pipeline.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Intestino Delgado/metabolismo , Técnicas Analíticas Microfluídicas , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Desoxicitidina/farmacologia , Humanos , Intestino Delgado/patologia , Dispositivos Lab-On-A-Chip , Neoplasias Pancreáticas/patologia , Gencitabina
14.
AAPS J ; 20(5): 90, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30109442

RESUMO

Proximal tubules in the kidney play a crucial role in reabsorbing and eliminating substrates from the body into the urine, leading to high local concentrations of xenobiotics. This makes the proximal tubule a major target for drug toxicity that needs to be evaluated during the drug development process. Here, we describe an advanced in vitro model consisting of fully polarized renal proximal tubular epithelial cells cultured in a microfluidic system. Up to 40 leak-tight tubules were cultured on this platform that provides access to the basolateral as well as the apical side of the epithelial cells. Exposure to the nephrotoxicant cisplatin caused a dose-dependent disruption of the epithelial barrier, a decrease in viability, an increase in effluent LDH activity, and changes in expression of tight-junction marker zona-occludence 1, actin, and DNA-damage marker H2A.X, as detected by immunostaining. Activity and inhibition of the efflux pumps P-glycoprotein (P-gp) and multidrug resistance protein (MRP) were demonstrated using fluorescence-based transporter assays. In addition, the transepithelial transport function from the basolateral to the apical side of the proximal tubule was studied. The apparent permeability of the fluorescent P-gp substrate rhodamine 123 was decreased by 35% by co-incubation with cyclosporin A. Furthermore, the activity of the glucose transporter SGLT2 was demonstrated using the fluorescent glucose analog 6-NBDG which was sensitive to inhibition by phlorizin. Our results demonstrate that we developed a functional 3D perfused proximal tubule model with advanced renal epithelial characteristics that can be used for drug screening studies.


Assuntos
Técnicas de Cultura de Células , Células Epiteliais/efeitos dos fármacos , Nefropatias/induzido quimicamente , Túbulos Renais Proximais/efeitos dos fármacos , Moduladores de Transporte de Membrana/toxicidade , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Perfusão , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Linhagem Celular , Polaridade Celular , Cisplatino/toxicidade , Ciclosporina/toxicidade , Relação Dose-Resposta a Droga , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Nefropatias/metabolismo , Nefropatias/patologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Dispositivos Lab-On-A-Chip , Proteínas de Membrana Transportadoras/metabolismo , Técnicas Analíticas Microfluídicas , Florizina/toxicidade , Transportador 2 de Glucose-Sódio/efeitos dos fármacos , Transportador 2 de Glucose-Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/toxicidade , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/patologia
15.
AAPS J ; 20(5): 87, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30051196

RESUMO

Drug-transporter interactions could impact renal drug clearance and should ideally be detected in early stages of drug development to avoid toxicity-related withdrawals in later stages. This requires reliable and robust assays for which current high-throughput screenings have, however, poor predictability. Kidney-on-a-chip platforms have the potential to improve predictability, but often lack compatibility with high-content detection platforms. Here, we combined conditionally immortalized proximal tubule epithelial cells overexpressing organic anion transporter 1 (ciPTEC-OAT1) with the microfluidic titer plate OrganoPlate to develop a screenings assay for renal drug-transporter interactions. In this platform, apical localization of F-actin and intracellular tight-junction protein zonula occludens-1 (ZO-1) indicated appropriate cell polarization. Gene expression levels of the drug transporters organic anion transporter 1 (OAT1; SLC22A6), organic cation transporter 2 (OCT2; SLC22A2), P-glycoprotein (P-gp; ABCB1), and multidrug resistance-associated protein 2 and 4 (MRP2/4; ABCC2/4) were similar levels to 2D static cultures. Functionality of the efflux transporters P-gp and MRP2/4 was studied as proof-of-concept for 3D assays using calcein-AM and 5-chloromethylfluorescein-diacetate (CMFDA), respectively. Confocal imaging demonstrated a 4.4 ± 0.2-fold increase in calcein accumulation upon P-gp inhibition using PSC833. For MRP2/4, a 3.0 ± 0.2-fold increased accumulation of glutathione-methylfluorescein (GS-MF) was observed upon inhibition with a combination of PSC833, MK571, and KO143. Semi-quantitative image processing methods for P-gp and MRP2/4 was demonstrated with corresponding Z'-factors of 0.1 ± 0.3 and 0.4 ± 0.1, respectively. In conclusion, we demonstrate a 3D microfluidic PTEC model valuable for screening of drug-transporter interactions that further allows multiplexing of endpoint read-outs for drug-transporter interactions and toxicity.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Células Epiteliais/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Dispositivos Lab-On-A-Chip , Moduladores de Transporte de Membrana/toxicidade , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Técnicas Analíticas Microfluídicas/instrumentação , Actinas/metabolismo , Transporte Biológico , Linhagem Celular Transformada , Polaridade Celular , Células Epiteliais/metabolismo , Humanos , Túbulos Renais Proximais/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Microscopia Confocal , Proteína 2 Associada à Farmacorresistência Múltipla , Medição de Risco , Proteína da Zônula de Oclusão-1/metabolismo
16.
BMC Cancer ; 17(1): 709, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29096610

RESUMO

BACKGROUND: Breast cancer is the most common invasive cancer among women. Currently, there are only a few models used for therapy selection, and they are often poor predictors of therapeutic response or take months to set up and assay. In this report, we introduce a microfluidic OrganoPlate® platform for extracellular matrix (ECM) embedded tumor culture under perfusion as an initial study designed to investigate the feasibility of adapting this technology for therapy selection. METHODS: The triple negative breast cancer cell lines MDA-MB-453, MDA-MB-231 and HCC1937 were selected based on their different BRCA1 and P53 status, and were seeded in the platform. We evaluate seeding densities, ECM composition (Matrigel®, BME2rgf, collagen I) and biomechanical (perfusion vs static) conditions. We then exposed the cells to a series of anti-cancer drugs (paclitaxel, olaparib, cisplatin) and compared their responses to those in 2D cultures. Finally, we generated cisplatin dose responses in 3D cultures of breast cancer cells derived from 2 PDX models. RESULTS: The microfluidic platform allows the simultaneous culture of 96 perfused micro tissues, using limited amounts of material, enabling drug screening of patient-derived material. 3D cell culture viability is improved by constant perfusion of the medium. Furthermore, the drug response of these triple negative breast cancer cells was attenuated by culture in 3D and differed from that observed in 2D substrates. CONCLUSIONS: We have investigated the use of a high-throughput organ-on-a-chip platform to select therapies. Our results have raised the possibility to use this technology in personalized medicine to support selection of appropriate drugs and to predict response to therapy in a real time fashion.


Assuntos
Antineoplásicos/farmacologia , Técnicas de Cultura de Células/métodos , Matriz Extracelular/metabolismo , Microfluídica/métodos , Proteína BRCA1/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Colágeno , Combinação de Medicamentos , Feminino , Humanos , Laminina , Mutação , Avaliação de Resultados em Cuidados de Saúde/métodos , Paclitaxel/farmacologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Prognóstico , Proteoglicanas , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
17.
Curr Opin Biotechnol ; 35: 118-26, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26094109

RESUMO

The transition from 2D to 3D cell culture techniques is an important step in a trend towards better biomimetic tissue models. Microfluidics allows spatial control over fluids in micrometer-sized channels has become a valuable tool to further increase the physiological relevance of 3D cell culture by enabling spatially controlled co-cultures, perfusion flow and spatial control over of signaling gradients. This paper reviews most important developments in microfluidic 3D culture since 2012. Most efforts were exerted in the field of vasculature, both as a tissue on its own and as part of cancer models. We observe that the focus is shifting from tool building to implementation of specific tissue models. The next big challenge for the field is the full validation of these models and subsequently the implementation of these models in drug development pipelines of the pharmaceutical industry and ultimately in personalized medicine applications.


Assuntos
Técnicas de Cultura de Células/métodos , Microfluídica/métodos , Animais , Biomimética , Técnicas de Cocultura , Humanos , Técnicas Analíticas Microfluídicas , Neoplasias , Técnicas de Cultura de Tecidos
18.
Lab Chip ; 13(18): 3548-54, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23887749

RESUMO

Human tissues and organs are inherently heterogeneous. Their functionality is determined by the interplay between different cell types, their secondary architecture, vascular system and gradients of signaling molecules and metabolites. Here we propose a stratified 3D cell culture platform, in which adjacent lanes of gels and liquids are patterned by phaseguides to capture this tissue heterogeneity. We demonstrate 3D cell culture of HepG2 hepatocytes under continuous perfusion, a rifampicin toxicity assay and co-culture with fibroblasts. 4T1 breast cancer cells are used to demonstrate invasion and aggregation models. The platform is incorporated in a microtiter plate format that renders it fully compatible with automation and high-content screening equipment. The extended functionality, ease of handling and full compatibility to standard equipment is an important step towards adoption of Organ-on-a-Chip technology for screening in an industrial setting.


Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Automação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Fibroblastos/citologia , Células Hep G2 , Humanos , Microscopia Confocal , Rifampina/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA