Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(5)2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-37243123

RESUMO

The E2 glycoprotein is one of the four structural proteins of the classical swine fever virus (CSFV) particle. E2 has been shown to be involved in many virus functions, including adsorption to host cells, virus virulence and interaction with several host proteins. Using a yeast two-hybrid screen, we have previously shown that the CSFV E2 specifically interacts with swine host protein medium-chain-specific acyl-Coenzyme A dehydrogenase (ACADM), an enzyme that catalyzes the initial step of the mitochondrial fatty acid beta-oxidation pathway. Here, we show that interaction between ACADM and E2 also happens in swine cells infected with CSFV using two different procedures: coimmunoprecipitation and a proximity ligation assay (PLA). In addition, the amino acid residues in E2 critically mediating the interaction with ACADM, M49 and P130 were identified via a reverse yeast two-hybrid screen using an expression library composed of randomly mutated versions of E2. A recombinant CSFV, E2ΔACADMv, harboring substitutions at residues M49I and P130Q in E2, was developed via reverse genomics from the highly virulent Brescia isolate. E2ΔACADMv was shown to have the same kinetics growth in swine primary macrophages and SK6 cell cultures as the parental Brescia strain. Similarly, E2ΔACADMv demonstrated a similar level of virulence when inoculated to domestic pigs as the parental Brescia. Animals intranasally inoculated with 105 TCID50 developed a lethal form of clinical disease with virological and hematological kinetics changes undistinguishable from those produced by the parental strain. Therefore, interaction between CSFV E2 and host ACADM is not critically involved in the processes of virus replication and disease production.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Suínos , Animais , Vírus da Febre Suína Clássica/fisiologia , Saccharomyces cerevisiae/metabolismo , Linhagem Celular , Proteínas do Envelope Viral/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular
2.
J Virol ; 96(1): e0141921, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34668772

RESUMO

African swine fever (ASF) is currently causing a major pandemic affecting the swine industry and protein availability from Central Europe to East and South Asia. No commercial vaccines are available, making disease control dependent on the elimination of affected animals. Here, we show that the deletion of the African swine fever virus (ASFV) E184L gene from the highly virulent ASFV Georgia 2010 (ASFV-G) isolate produces a reduction in virus virulence during the infection in swine. Of domestic pigs intramuscularly inoculated with a recombinant virus lacking the E184L gene (ASFV-G-ΔE184L), 40% experienced a significantly (5 days) delayed presentation of clinical disease and, overall, had a 60% rate of survival compared to animals inoculated with the virulent parental ASFV-G. Importantly, all animals surviving ASFV-G-ΔE184L infection developed a strong antibody response and were protected when challenged with ASFV-G. As expected, a pool of sera from ASFV-G-ΔE184L-inoculated animals lacked any detectable antibody response to peptides partially representing the E184L protein, while sera from animals inoculated with an efficacious vaccine candidate, ASFV-G-ΔMGF, strongly recognize the same set of peptides. These results support the potential use of the E184L deletion for the development of vaccines able to differentiate infected from vaccinated animals (DIVA). Therefore, it is shown here that the E184L gene is a novel ASFV determinant of virulence that can potentially be used to increase safety in preexisting vaccine candidates, as well as to provide them with DIVA capabilities. To our knowledge, E184L is the first ASFV gene product experimentally shown to be a functional DIVA antigenic marker. IMPORTANCE No commercial vaccines are available to prevent African swine fever (ASF). The ASF pandemic caused by the ASF virus Georgia 2010 (ASFV-G) strain is seriously affecting pork production in a contiguous geographical area from Central Europe to East Asia. The only effective experimental vaccines are viruses attenuated by deleting ASFV genes associated with virus virulence. Therefore, identification of such genes is of critical importance for vaccine development. Here, we report the discovery of a novel determinant of ASFV virulence, the E184L gene. Deletion of the E184L gene from the ASFV-G genome (ASFV-G-ΔE184L) produced a reduction in virus virulence, and importantly, animals surviving infection with ASFV-G-ΔE184L were protected from developing ASF after challenge with the virulent parental virus ASFV-G. Importantly, the virus protein encoded by E184L is highly immunogenic, making a virus lacking this gene a vaccine candidate that allows the differentiation of infected from vaccinated animals (DIVA). Here, we show that unlike what is observed in animals inoculated with the vaccine candidate ASFV-G-ΔMGF, ASFV-G-ΔE184L-inoculated animals do not mount a E184L-specific antibody response, indicating the feasibility of using the E184L deletion as the antigenic marker for the development of a DIVA vaccine in ASFV.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/virologia , Interações Hospedeiro-Patógeno , Deleção de Sequência , Proteínas Virais/genética , Fatores de Virulência/genética , Febre Suína Africana/diagnóstico , Vírus da Febre Suína Africana/classificação , Sequência de Aminoácidos , Animais , Temperatura Corporal , Sequência Conservada , Regulação Viral da Expressão Gênica , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Filogenia , Suínos , Proteínas Virais/química , Proteínas Virais/metabolismo , Viremia , Virulência , Fatores de Virulência/química , Fatores de Virulência/metabolismo , Replicação Viral
3.
Viruses ; 13(9)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34578263

RESUMO

African swine fever (ASF) has become the major threat to the global swine industry. Lack of available commercial vaccines complicates the implementation of global control strategies. So far, only live attenuated ASF viruses (ASFV) have demonstrated solid protection efficacy at the experimental level. The implementation of molecular techniques has allowed the generation of a collection of deletion mutants lacking ASFV-specific virulence factors, some of them with promising potential as vaccine candidates against the pandemic genotype II ASFV strain currently circulating in Africa, Europe, Asia and Oceania. Despite promising results, there is room for improvement, mainly from the biosafety point of view. Aiming to improve the safety of BA71∆CD2, a cross-protective recombinant live attenuated virus (LAV) lacking the ASFV CD2v gene (encoding ß-glucuronidase as a reporter gene) available in our laboratory, three new recombinants were generated using BA71∆CD2 as a template: the single mutant BA71∆CD2f, this time containing the fluorescent mCherry reporter gene instead of CD2v, and two double recombinants lacking CD2v and either the lectin gene (EP153R) or the uridine kinase (UK) gene (DP96R). Comparative in vivo experiments using BA71∆CD2f, BA71∆CD2DP96R and BA71∆CD2EP153R recombinant viruses as immunogens, demonstrated that deletion of either DP96R or EP153R from BA71∆CD2f decreases vaccine efficacy and does not improve safety. Our results additionally confirm ASFV challenge as the only available method today to evaluate the protective efficacy of any experimental vaccine. We believe that understanding the fine equilibrium between attenuation and inducing protection in vivo deserves further study and might contribute to more rational vaccine designs in the future.


Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/prevenção & controle , Anticorpos Antivirais/sangue , Deleção de Genes , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Células Cultivadas , Genótipo , Macrófagos/virologia , Masculino , Suínos , Eficácia de Vacinas , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Vacinas Virais/genética , Fatores de Virulência/genética , Replicação Viral
4.
J Virol ; 95(21): e0113921, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34406865

RESUMO

African swine fever virus (ASFV) is causing a devastating pandemic in domestic and wild swine within an extended geographical area from Central Europe to East Asia, resulting in economic losses for the regional swine industry. There are no commercial vaccines; therefore, disease control relies on identification and culling of infected animals. We report here that the deletion of the ASFV gene A137R from the highly virulent ASFV-Georgia2010 (ASFV-G) isolate induces a significant attenuation of virus virulence in swine. A recombinant virus lacking the A137R gene, ASFV-G-ΔA137R, was developed to assess the role of this gene in ASFV virulence in domestic swine. Animals inoculated intramuscularly with 102 50% hemadsorption doses (HAD50) of ASFV-G-ΔA137R remained clinically healthy during the 28-day observational period. All animals inoculated with ASFV-G-ΔA137R had medium to high viremia titers and developed a strong virus-specific antibody response. Importantly, all ASFV-G-ΔA137R-inoculated animals were protected when challenged with the virulent parental strain ASFV-G. No evidence of replication of challenge virus was observed in the ASFV-G-ΔA137R-inoculated animals. Therefore, ASFV-G-ΔA137R is a novel potential live attenuated vaccine candidate and one of the few experimental vaccine strains reported to induce protection against the highly virulent ASFV Georgia virus that is the cause of the current Eurasian pandemic. IMPORTANCE No commercial vaccine is available to prevent African swine fever. The ASF pandemic caused by ASFV Georgia2007 strain (ASFV-G) is seriously affecting pork production in a contiguous area from Central Europe to East Asia. Here we report the rational development of a potential live attenuated vaccine strain by deleting a virus-specific gene, A137R, from the genome of ASFV-G. The resulting virus presented a completely attenuated phenotype and, importantly, animals infected with this genetically modified virus were protected from developing ASF after challenge with the virulent parental virus. ASFV-G-ΔA137R confers protection even at low doses (102 HAD50), demonstrating its potential as a vaccine candidate. Therefore, ASFV-G-ΔA137R is a novel experimental ASF vaccine protecting pigs from the epidemiologically relevant ASFV Georgia isolate.


Assuntos
Vírus da Febre Suína Africana/genética , Deleção de Genes , Pandemias , Proteínas Virais/genética , Fatores de Virulência/genética , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana/patogenicidade , Animais , Anticorpos Antivirais/sangue , Células Cultivadas , República da Geórgia , Macrófagos/imunologia , Macrófagos/virologia , Suínos , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia , Virulência , Replicação Viral
5.
Viruses ; 13(6)2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073222

RESUMO

African swine fever virus (ASFV) causes a devastating disease of swine that has caused outbreaks in Central Europe since 2007, spreading into Asia in 2018. ASFV is a large, structurally complex virus with a large dsDNA genome encoding for more than 160 genes, most of them still uncharacterized. p22, encoded by the ASFV gene KP177R, is an early transcribed, structural virus protein located in the ASFV particle. Although its exact function is unknown, p22 has recently been identified as an interacting partner of several host proteins. Here, we describe the development of a recombinant ASFV (ASFV-G-∆KP177R) lacking the KP177R gene as a tool to evaluate the role of p22 in virus replication and virulence in swine. The recombinant ASFV-G-∆KP177R demonstrated that the KP177R gene is non-essential for ASFV replication in primary swine macrophages, with virus yields similar to those of the parental, highly virulent field isolate Georgia2010 (ASFV-G). In addition, experimental infection of domestic pigs with ASFV-G-∆KP177R produced a clinical disease similar to that caused by the parental ASFV-G. Therefore, and surprisingly, p22 does not seem to be involved in virus replication or virulence in swine.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/virologia , Proteínas Estruturais Virais/genética , Replicação Viral , Vírus da Febre Suína Africana/patogenicidade , Sequência de Aminoácidos , Animais , Células Cultivadas , Sequência Conservada , Deleção de Genes , Macrófagos/virologia , Mutação , Suínos , Carga Viral , Virulência , Fatores de Virulência/genética
6.
Viruses ; 13(2)2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673255

RESUMO

African swine fever (ASF) is currently causing an epizootic, affecting pigs throughout Eurasia, and causing significant economic losses in the swine industry. ASF is caused by African swine fever virus (ASFV) that consists of a large dsDNA genome that encodes for more than 160 genes; few of these genes have been studied in detail. ASFV contains four multi-gene family (MGF) groups of genes that have been implicated in regulating the immune response and host specificity; however, the individual roles of most of these genes have not been well studied. Here, we describe the evaluation of the previously uncharacterized ASFV MGF110-1L open reading frame (ORF) using a deletion mutant of the ASFV currently circulating throughout Eurasia. The recombinant ASFV lacking the MGF110-1L gene (ASFV-G-ΔMGF110-1L) demonstrated in vitro that the MGF110-1L gene is non-essential, since ASFV-G-ΔMGF110-1L had similar replication kinetics in primary swine macrophage cell cultures when compared to parental highly virulent field isolate Georgia2007 (ASFV-G). Experimental infection of domestic pigs with ASFV-G-ΔMGF110-1L produced a clinical disease similar to that caused by the parental ASFV-G, confirming that deletion of the MGF110-1L gene from the ASFV genome does not affect viral virulence.


Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/patogenicidade , Febre Suína Africana/patologia , Fases de Leitura Aberta/genética , Fatores de Virulência/genética , Replicação Viral/genética , Sequência de Aminoácidos/genética , Animais , Sequência de Bases , Células Cultivadas , Deleção de Genes , Regulação Viral da Expressão Gênica/genética , Genoma Viral/genética , República da Geórgia , Macrófagos/virologia , Alinhamento de Sequência , Sus scrofa , Suínos/virologia , Doenças dos Suínos/virologia , Virulência/genética
7.
Viruses ; 14(1)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062213

RESUMO

African swine fever virus (ASFV) is producing a devastating pandemic that, since 2007, has spread to a contiguous geographical area from central Europe to Asia. In July 2021, ASFV was detected in the Dominican Republic, the first report of the disease in the Americas in more than 40 years. ASFV is a large, highly complex virus harboring a large dsDNA genome that encodes for more than 150 genes. The majority of these genes have not been functionally characterized. Bioinformatics analysis predicts that ASFV gene A859L encodes for an RNA helicase, although its function has not yet been experimentally assessed. Here, we evaluated the role of the A859L gene during virus replication in cell cultures and during infection in swine. For that purpose, a recombinant virus (ASFV-G-∆A859L) harboring a deletion of the A859L gene was developed using the highly virulent ASFV Georgia (ASFV-G) isolate as a template. Recombinant ASFV-G-∆A859L replicates in swine macrophage cultures as efficiently as the parental virus ASFV-G, demonstrating that the A859L gene is non-essential for ASFV replication. Experimental infection of domestic pigs demonstrated that ASFV-G-∆A859L replicates as efficiently and induces a clinical disease indistinguishable from that caused by the parental ASFV-G. These studies conclude that the predicted RNA helicase gene A859L is not involved in the processes of virus replication or disease production in swine.


Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/patogenicidade , Febre Suína Africana/virologia , RNA Helicases/genética , Vírus da Febre Suína Africana/fisiologia , Animais , Células Cultivadas , Deleção de Genes , Genes Virais , Macrófagos/virologia , Sus scrofa , Suínos , Transcrição Gênica , Proteínas Virais/genética , Virulência/genética , Replicação Viral/genética
8.
Viruses ; 12(9)2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825617

RESUMO

African swine fever virus (ASFV) is currently causing devastating outbreaks in Asia and Europe, and the ASFV strain Georgia (ASFV-G) is responsible for these outbreaks. ASFV-G is highly virulent and continues to be maintained in these outbreak areas, apparently without suffering significant genomic or phenotypic changes. When comparing the genome of ASFV-G to other isolates, a thus-far uncharacterized gene, X69R, is highly conserved and, interestingly, is similar to another ASFV uncharacterized gene, J64R. All sequenced ASFV isolates have one or both of these genes, X69R or J64R, suggesting that the presence of at least one of these genes may be necessary for ASFV replication and or virulence. The X69R gene is present in the ASFV-G genome while J64R is absent. To assess the importance of X69R in ASFV-G functionality, we developed a recombinant virus by deleting the X69R gene from the ASFV-G genome (ASFV-G-ΔX69R). ASFV-G-ΔX69R had the same replication kinetics in primary swine macrophage cultures as the parental ASFV-G, indicating that the X69R gene is not essential for ASFV-G viability or efficient replication in the main target cell during in vivo infection. In addition, swine intramuscularly inoculated with a low dose (102 HAD50) of ASFV-G-ΔX69R developed a clinical disease indistinguishable from that induced by the same dose of the virulent parental ASFV-G isolate. Viremia values of ASFV-G-ΔX69R did not significantly differ from those detected in animals infected with parental virus. Therefore, deletion of the X69R gene from ASFV-G does not affect virus replication or virulence in swine.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/virologia , Genes Virais , Vírus da Febre Suína Africana/isolamento & purificação , Sequência de Aminoácidos , Animais , Células Cultivadas , Deleção de Genes , Macrófagos/virologia , Viabilidade Microbiana/genética , Alinhamento de Sequência , Suínos , Transcrição Gênica , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência/genética , Replicação Viral/genética
9.
Viruses ; 12(8)2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731642

RESUMO

African swine fever virus (ASFV) is causing outbreaks both in domestic pigs and wild boar in Europe and Asia. In 2018, the largest pig producing country, China, reported its first outbreak of African swine fever (ASF). Since then, the disease has quickly spread to all provinces in China and to other countries in southeast Asia, and most recently to India. Outbreaks of the disease occur in Europe as far west as Poland, and one isolated outbreak has been reported in Belgium. The current outbreak strain is highly contagious and can cause a high degree of lethality in domestic pigs, leading to widespread and costly losses to the industry. Currently, detection of infectious ASFV in field clinical samples requires accessibility to primary swine macrophage cultures, which are infrequently available in most regional veterinary diagnostic laboratories. Here, we report the identification of a commercially available cell line, MA-104, as a suitable substrate for virus isolation of African swine fever virus.


Assuntos
Vírus da Febre Suína Africana/isolamento & purificação , Febre Suína Africana/virologia , Surtos de Doenças/veterinária , Células Epiteliais/virologia , Vírus da Febre Suína Africana/fisiologia , Animais , Técnicas de Cultura de Células , Linhagem Celular , Chlorocebus aethiops , Macrófagos/virologia , Sus scrofa/virologia , Suínos
10.
Viruses ; 12(6)2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585808

RESUMO

African swine fever virus (ASFV) is the causative agent of the African swine fever (ASF) epizootic currently affecting pigs throughout Eurasia, causing significant economic losses in the swine industry. The virus genome encodes for more than 160 genes, of which only a few have been studied in detail. Here we describe the previously uncharacterized ASFV open reading frame (ORF) C962R, a gene encoding for a putative NTPase. RNA transcription studies using infected swine macrophages demonstrate that the C962R gene is translated as a late virus protein. A recombinant ASFV lacking the C962R gene (ASFV-G-ΔC962R) demonstrates in vivo that the C962R gene is non-essential, since ASFV-G-ΔC962R has similar replication kinetics in primary swine macrophage cell cultures when compared to parental highly virulent field isolate Georgia2007 (ASFV-G). Experimental infection of domestic pigs with ASFV-G-ΔC962R produced a clinical disease similar to that caused by the parental ASFV-G, confirming that deletion of the C962R gene from the ASFV genome does not impact virulence.


Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/patogenicidade , Febre Suína Africana/patologia , Nucleosídeo-Trifosfatase/genética , Sequência de Aminoácidos , Animais , Células Cultivadas , Deleção de Genes , Genoma Viral/genética , Macrófagos/virologia , Fases de Leitura Aberta/genética , Alinhamento de Sequência , Suínos , Doenças dos Suínos/virologia , Proteínas Virais/genética , Fatores de Virulência/genética , Replicação Viral/genética
11.
Viruses ; 12(4)2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283651

RESUMO

E2 is the major structural glycoprotein of the classical swine fever virus (CSFV). E2 has been shown to be involved in important virus functions such as replication and virulence in swine. Using the yeast two-hybrid system, we previously identified several host proteins specifically interacting with CSFV E2. Here, we analyze the protein interaction of E2 with SERTA domain containing protein 1 (SERTAD1), a factor involved in the stimulation of the transcriptional activities of different host genes. We have confirmed that the interaction between these two proteins occurs in CSFV-infected swine cells by using a proximity ligation assay and confocal microscopy. Amino acid residues in the CSFV E2 protein that are responsible for mediating the interaction with SERTAD1 were mapped by a yeast two-hybrid approach using a randomly mutated E2 library. Using that information, a recombinant CSFV mutant (E2ΔSERTAD1v) that harbors substitutions in those residues mediating the protein-interaction with SERTAD1 was developed and used to study the role of the E2-SERTAD1 interaction in viral replication and virulence in swine. CSFV E2ΔSERTAD1v, when compared to the parental BICv, showed a clearly decreased ability to replicate in the SK6 swine cell line and a more severe replication defect in primary swine macrophage cultures. Importantly, 80% of animals infected with E2ΔSERTAD1v survived infection, remaining clinically normal during the 21-day observational period. This result would indicate that the ability of CSFV E2 to bind host SERTAD1 protein during infection plays a critical role in virus virulence.


Assuntos
Vírus da Febre Suína Clássica/fisiologia , Peste Suína Clássica/metabolismo , Peste Suína Clássica/virologia , Interações Hospedeiro-Patógeno , Fatores de Transcrição/metabolismo , Proteínas do Envelope Viral/metabolismo , Replicação Viral , Animais , Linhagem Celular , Mutação , Ligação Proteica , Suínos , Técnicas do Sistema de Duplo-Híbrido , Virulência
12.
Viruses ; 12(4)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244508

RESUMO

Interactions between the major structural glycoprotein E2 of classical swine fever virus (CSFV) with host proteins have been identified as important factors affecting virus replication and virulence. Previously, using the yeast two-hybrid system, we identified swine host proteins specifically interacting with CSFV E2. In this report, we use a proximity ligation assay to demonstrate that swine host protein CCDC115 interacts with E2 in CSFV-infected swine cells. Using a randomly mutated E2 library in the context of a yeast two-hybrid methodology, specific amino acid mutations in the CSFV E2 protein responsible for disrupting the interaction with CCDC115 were identified. A recombinant CSFV mutant (E2ΔCCDC115v) harboring amino acid changes disrupting the E2 protein interaction with CCDC115 was produced and used as a tool to assess the role of the E2-CCDC115 interaction in viral replication and virulence in swine. CSFV E2ΔCCDC115v showed a slightly decreased ability to replicate in the SK6 swine cell line and a greater replication defect in primary swine macrophage cultures. A decreased E2-CCDC115 interaction detected by PLA is observed in cells infected with E2ΔCCDC115v. Importantly, animals intranasally infected with 105 TCID50 of E2ΔCCDC115v experienced a significantly longer survival period when compared with those infected with the parental Brescia strain. This result would indicate that the ability of CSFV E2 to bind host CCDC115 protein during infection plays an important role in virus replication in swine macrophages and in virus virulence during the infection in domestic swine.


Assuntos
Vírus da Febre Suína Clássica/fisiologia , Peste Suína Clássica/virologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Envelope Viral/metabolismo , Replicação Viral , Animais , Células Cultivadas , Peste Suína Clássica/metabolismo , Peste Suína Clássica/patologia , Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/metabolismo , Vírus da Febre Suína Clássica/patogenicidade , Interações Hospedeiro-Patógeno , Macrófagos/virologia , Mutação , Ligação Proteica , Análise de Sobrevida , Suínos , Proteínas do Envelope Viral/genética , Virulência/genética , Replicação Viral/genética
13.
J Virol ; 94(7)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31969432

RESUMO

African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal disease of domestic pigs that has significant economic consequences for the swine industry. The disease is devastating the swine industry in Central Europe and East Asia, with current outbreaks caused by circulating strains of ASFV derived from the 2007 Georgia isolate (ASFV-G), a genotype II ASFV. In the absence of any available vaccines, African swine fever (ASF) outbreak containment relies on the control and culling of infected animals. Limited cross-protection studies suggest that in order to ensure a vaccine is effective, it must be derived from the current outbreak strain or at the very least from an isolate with the same genotype. Here, we report the discovery that the deletion of a previously uncharacterized gene, I177L, from the highly virulent ASFV-G produces complete virus attenuation in swine. Animals inoculated intramuscularly with the virus lacking the I177L gene, ASFV-G-ΔI177L, at a dose range of 102 to 106 50% hemadsorbing doses (HAD50), remained clinically normal during the 28-day observational period. All ASFV-G-ΔI177L-infected animals had low viremia titers, showed no virus shedding, and developed a strong virus-specific antibody response; importantly, they were protected when challenged with the virulent parental strain ASFV-G. ASFV-G-ΔI177L is one of the few experimental vaccine candidate virus strains reported to be able to induce protection against the ASFV Georgia isolate, and it is the first vaccine capable of inducing sterile immunity against the current ASFV strain responsible for recent outbreaks.IMPORTANCE Currently, there is no commercially available vaccine against African swine fever. Outbreaks of this disease are devastating the swine industry from Central Europe to East Asia, and they are being caused by circulating strains of African swine fever virus derived from the Georgia 2007 isolate. Here, we report the discovery of a previously uncharacterized virus gene, which when deleted completely attenuates the Georgia isolate. Importantly, animals infected with this genetically modified virus were protected from developing ASF after challenge with the virulent parental virus. Interestingly, ASFV-G-ΔI177L confers protection even at low doses (102 HAD50) and remains completely attenuated when inoculated at high doses (106 HAD50), demonstrating its potential as a safe vaccine candidate. At medium or higher doses (104 HAD50), sterile immunity is achieved. Therefore, ASFV-G-ΔI177L is a novel efficacious experimental ASF vaccine protecting pigs from the epidemiologically relevant ASFV Georgia isolate.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/imunologia , Vacinas Virais/imunologia , Febre Suína Africana/prevenção & controle , Animais , Formação de Anticorpos , Temperatura Corporal , Células Cultivadas , Epidemias , Deleção de Genes , Genótipo , Macrófagos/virologia , Mutação , Suínos , Proteínas Virais/genética , Viremia/virologia , Virulência , Replicação Viral
14.
Sci Rep ; 10(1): 494, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949276

RESUMO

The CD2-like African swine fever virus (ASFV) gene 8DR, (also known as EP402R) encodes for a structural transmembrane glycoprotein that has been shown to mediate hemadsorption and be involved in host immunomodulation as well as the induction of protective immune response. In addition, several natural ASFV isolates showing decreased virulence in swine has been shown to be non-hemadsorbing suggesting an association between altered or deleted forms of 8DR and virus attenuation. Here we demonstrate that deletion of 8DR gene from the genome of ASFV Georgia2010 isolate (ASFV-G-Δ8DR) does not significantly alter the virulence of the virus. ASFV-G-Δ8DR inoculated intramuscularly or intranasally (in a range of 102 to 104 TCID50) produced a clinical disease in domestic pigs indistinguishable from that induced by the same doses of the virulent parental ASFV Georgia2010 isolate. In addition, viremia values in ASFV-G-Δ8DR do not differ from those detected in animals infected with parental virus. Therefore, deletion of 8DR gene is not associated with a noticeable decrease in virulence of the ASFV Georgia isolate.


Assuntos
Vírus da Febre Suína Africana/patogenicidade , Febre Suína Africana/virologia , Deleção de Genes , Glicoproteínas/genética , Viremia/virologia , Vírus da Febre Suína Africana/genética , Animais , Células Cultivadas , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Macrófagos/citologia , Macrófagos/virologia , Suínos , Proteínas Virais/genética , Fatores de Virulência/genética , Sequenciamento Completo do Genoma/métodos
15.
Viruses ; 12(1)2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31947814

RESUMO

African swine fever virus (ASFV) causes a contagious and frequently lethal disease of pigs with significant economic consequences to the swine industry. The ASFV genome encodes for more than 160 genes, but only a few of them have been studied in detail. Here we report the characterization of open reading frame (ORF) MGF360-16R. Kinetic studies of virus RNA transcription demonstrated that the MGF360-16R gene is transcribed as a late virus protein. Analysis of host-protein interactions for the MGF360-16R gene using a yeast two-hybrid screen identified SERTA domain containing 3 (SERTAD3) and syndecan-binding protein (SDCBP) as host protein binding partners. SERTAD3 and SDCBP are both involved in nuclear transcription and SDCBP has been shown to be involved in virus traffic inside the host cell. Interaction between MGF360-16R and SERTAD3 and SDCBP host proteins was confirmed in eukaryotic cells transfected with plasmids expressing MGF360-16R and SERTAD3 or SDCBP fused to fluorescent tags. A recombinant ASFV lacking the MGF360-16R gene (ASFV-G-ΔMGF360-16R) was developed from the highly virulent field isolate Georgia2007 (ASFV-G) and was used to show that MGF360-16R is a nonessential gene. ASFV-G-ΔMGF360-16R had a similar replication ability in primary swine macrophage cell cultures when compared to its parental virus ASFV-G. Experimental infection of domestic pigs showed that ASFV-G-ΔMGF360-16R is as virulent as the parental virus ASFV-G.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/virologia , Sinteninas/metabolismo , Transativadores/metabolismo , Proteínas Virais/metabolismo , Febre Suína Africana/metabolismo , Vírus da Febre Suína Africana/classificação , Vírus da Febre Suína Africana/patogenicidade , Animais , Células Cultivadas , Deleção de Genes , Expressão Gênica , Interações Hospedeiro-Patógeno , Macrófagos/virologia , Fases de Leitura Aberta , Ligação Proteica , Suínos , Proteínas Virais/genética , Virulência , Replicação Viral
16.
Viruses ; 13(1)2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383814

RESUMO

African swine fever virus (ASFV) is the causative agent of African swine fever, a disease currently causing significant economic losses in Europe and Asia. Specifically, the highly virulent ASFV strain Georgia 2010 (ASFV-G) is producing disease outbreaks in this large geographical region. The ASFV genome encodes for over 150 genes, most of which are still not experimentally characterized. I8L is a highly conserved gene that has not been studied beyond its initial description as a virus ORF. Transcriptional analysis of swine macrophages infected with ASFV-G demonstrated that the I8L gene is transcribed early during the virus replication cycle. To assess the importance of I8L during ASFV-G replication in vitro and in vivo, as well as its role in virus virulence in domestic swine, we developed a recombinant virus lacking the I8L gene (ASFV-G-ΔI8L). Replication of ASFV-G-ΔI8L was similar to parental ASFV-G replication in primary swine macrophage cultures, suggesting that the I8L gene is not essential for ASFV-G replication in vitro. Similarly, replication of ASFV-G-ΔI8L in swine intramuscularly inoculated with 102 HAD50 displayed replication kinetics similar to ASFV-G. In addition, animals inoculated with ASFV-G-ΔI8L presented with a clinical disease indistinguishable from that induced by the same dose of the virulent parental ASFV-G isolate. We conclude that deletion of the I8L gene from ASFV-G does not affect virus replication in vitro or in vivo, nor changes the disease outcome in swine.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/epidemiologia , Febre Suína Africana/virologia , Deleção de Genes , Proteínas Virais/genética , Febre Suína Africana/história , Febre Suína Africana/mortalidade , Vírus da Febre Suína Africana/isolamento & purificação , Animais , Células Cultivadas , Genoma Viral , Genômica , República da Geórgia/epidemiologia , História do Século XXI , Macrófagos/virologia , Vírus Reordenados , Recombinação Genética , Suínos , Virulência
17.
Viruses ; 11(7)2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269702

RESUMO

African swine fever virus (ASFV) is the etiological agent of an often lethal disease of domestic pigs, African swine fever (ASF). The ASFV Georgia 2007 isolate (ASFV-G) is responsible for the current epidemic situation in Europe and Asia. Genetically modified ASFVs containing deletions of virulence-associated genes have produced attenuated phenotypes and induced protective immunity in swine. Here we describe the differential behavior of two viral genes, NL (DP71L) and UK (DP96R), both originally described as being involved in virus virulence. Deletion of either of these genes efficiently attenuated ASFV strain E70. We demonstrated that deletion of the UK gene from the ASFV-G genome did not decrease virulence when compared to the parental virus. Conversely, deletion of the NL gene produced a heterogeneous response, with early death in one of the animals and transient fever in the other animals. With this knowledge, we attempted to increase the safety profile of the previously reported experimental vaccine ASFV-GΔ9GL/ΔUK by deleting the NL gene. A triple gene-deletion virus was produced, ASFV-GΔ9GL/ΔNL/ΔUK. Although ASFV-GΔ9GL/ΔNL/ΔUK replicated in primary cell cultures of swine macrophages, it demonstrated a severe replication deficiency in pigs, failing to induce protection against challenge with parental ASFV-G.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/prevenção & controle , Genes Virais/genética , Deleção de Sequência , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia , Fatores de Virulência/genética , Febre Suína Africana/imunologia , Febre Suína Africana/transmissão , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Anticorpos Antivirais , Modelos Animais de Doenças , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Macrófagos/virologia , Fenótipo , Alinhamento de Sequência , Taxa de Sobrevida , Sus scrofa , Suínos , Vacinas Atenuadas/genética , Vacinas Virais/genética , Virulência/genética , Replicação Viral
18.
Mol Cell Biol ; 39(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31085681

RESUMO

Fanconi anemia (FA) is an inherited disease characterized by bone marrow failure and increased cancer risk. FA is caused by mutation of any 1 of 22 genes, and the FA proteins function cooperatively to repair DNA interstrand cross-links (ICLs). A central step in the activation of the FA pathway is the monoubiquitination of the FANCD2 and FANCI proteins, which occurs within chromatin. How FANCD2 and FANCI are anchored to chromatin remains unknown. In this study, we identify and characterize a FANCD2 histone-binding domain (HBD) and embedded methyl-lysine-binding domain (MBD) and demonstrate binding specificity for H4K20me2. Disruption of the HBD/MBD compromises FANCD2 chromatin binding and nuclear focus formation and its ability to promote error-free DNA interstrand cross-link repair, leading to increased error-prone repair and genome instability. Our study functionally describes the first FA protein chromatin reader domain and establishes an important link between this human genetic disease and chromatin plasticity.


Assuntos
Proteína do Grupo de Complementação D2 da Anemia de Fanconi/química , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Anemia de Fanconi/genética , Histonas/metabolismo , Sítios de Ligação , Linhagem Celular , Cromatina/metabolismo , Reparo do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Instabilidade Genômica , Células HeLa , Histonas/química , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica
19.
Viruses ; 11(4)2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934875

RESUMO

Classical swine fever virus (CSFV) E2 protein, the major virus structural glycoprotein, is an essential component of the viral envelope. E2 is involved in virus absorption, induction of a protective immune response and is critical for virulence in swine. Using the yeast two-hybrid system, we identified protein phosphatase 1 catalytic subunit beta (PPP1CB), which is part of the Protein Phosphatase 1 (PP1) complex, as a specific binding host partner for E2. We further confirmed the occurrence of this interaction in CSFV-infected swine cells by using two independent methodologies: Co-immunoprecipitation and Proximity Ligation Assay. In addition, we demonstrated that pharmacological activation of the PP1 pathway has a negative effect on CSFV replication while inhibition of the PP1 pathway or knockdown of PPP1CB by siRNA had no observed effect. Overall, our data suggests that the CSFV E2 and PPP1CB protein interact in infected cells, and that activation of the PP1 pathway decreases virus replication.


Assuntos
Domínio Catalítico , Vírus da Febre Suína Clássica/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Proteína Fosfatase 1/metabolismo , Proteínas do Envelope Viral/metabolismo , Animais , Vírus da Febre Suína Clássica/imunologia , Ligação Proteica , Mapeamento de Interação de Proteínas , Suínos , Técnicas do Sistema de Duplo-Híbrido , Replicação Viral
20.
Virus Res ; 249: 116-123, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29605728

RESUMO

African swine fever virus (ASFV) causes a contagious and frequently lethal disease of pigs causing significant economic consequences to the swine industry. The ASFV genome encodes for more than 150 genes, but only a few of them have been studied in detail. Here we report the characterization of open reading frame L83L which encodes a highly conserved protein across all ASFV isolates. A recombinant ASFV harboring a HA tagged L83L protein was developed (ASFV-G-L83L-HA) and used to demonstrate that L83L is a transiently expressed early virus protein. A recombinant ASFV lacking the L83L gene (ASFV-G-ΔL83L) was developed from the highly virulent field isolate Georgia2007 (ASFV-G) and was used to show that L83L is a non-essential gene. ASFV-G-ΔL83L had similar replication in primary swine macrophage cells when compared to its parental virus ASFV-G. Analysis of host-protein interactions for L83L identified IL-1ß as its host ligand. Experimental infection of domestic pigs showed that ASFV-G-ΔL83L is as virulent as the parental virus ASFV-G.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Interações Hospedeiro-Patógeno , Interleucina-1beta/metabolismo , Proteínas Virais/metabolismo , Vírus da Febre Suína Africana/genética , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Macrófagos/virologia , Suínos , Proteínas Virais/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA