Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36984095

RESUMO

The protective coating with a self-organized microtubular structure was formed using plasma electrolytic oxidation (PEO) on AlMg3 aluminum alloy in the tartrate-fluoride electrolyte. This protective layer was further modified using corrosion inhibitors of the azole group (1,2,4-triazole, benzotriazole) and polymer material (polyvinilidene fluoride, PVDF). X-ray diffraction analysis and scanning electron microscopy with energy dispersive spectroscopy were used to study the morphology and composition of the obtained oxide coatings. The presence of the inhibitor in the PEO-layer was confirmed using micro-Raman spectroscopy and X-ray photoelectron spectroscopy. The level of corrosion protection of formed coatings as well as the effect of loaded inhibitors on the anticorrosion efficiency was evaluated using electrochemical impedance spectroscopy (EIS) and localized scanning techniques (SVET/SIET). The coating impregnation with corrosion inhibitors of the azole group significantly improves the corrosion characteristics of the material. Impregnation of the base PEO-layer with 1,2,4-triazole during 24 h results in a 36 times increase in the impedance modulus measured at the lowest frequency (|Z|f=0.1Hz). Additional sealing of impregnated coating with polymer improves the corrosion stability of the treated material. On the base of the obtained data, the optimal way of protective inhibitor- and polymer-containing formation using surface treatment was suggested. The best barrier properties were established for hybrid coatings obtained by the immersion of a PEO-coated sample in 1,2,4-triazole solution for 24 h and following spraying the PVDF solution. The value of |Z|f=0.1Hz for this protective layer increased by more than two orders of magnitude in comparison with the base PEO-layer. The three-stage mechanism of corrosion inhibition of the sample with smart inhibitor-containing coating was established.

2.
Materials (Basel) ; 13(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560318

RESUMO

Wrought Al-Cu-Mg aluminum alloy (D16) was treated by bipolar plasma electrolytic oxidation to create a base plasma electrolytic oxidation (PEO)-coating with corrosion protection and mechanical properties superior to bare alloy's natural oxide layer. Additional protection was provided by the application of polymer, thus creating a composite coating. Electrochemical and scratch tests, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction studies were performed. Degradation of coatings in the marine atmosphere and seawater was evaluated. The composite polymer-containing coating provided better corrosion protection of aluminum alloy compared to the PEO-coating, although seawater affected both. During the atmospheric exposure, the PEO-coating provided reasonably good protection, and the composite coating showed excellent performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA