Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Diagn ; 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37544360

RESUMO

Microsatellite instability (MSI) is an evolving biomarker for cancer detection and treatment. MSI was first used to identify patients with Lynch syndrome, a hereditary form of colorectal cancer (CRC), but has recently become indispensable in predicting patient response to immunotherapy. To address the need for pan-cancer MSI detection, a new multiplex assay was developed that uses novel long mononucleotide repeat (LMR) markers to improve sensitivity. A total of 469 tumor samples from 20 different cancer types, including 319 from patients with Lynch syndrome, were tested for MSI using the new LMR MSI Analysis System. Results were validated by using deficient mismatch repair (dMMR) status according to immunohistochemistry as the reference standard and compared versus the Promega pentaplex MSI panel. The sensitivity of the LMR panel for detection of dMMR status by immunohistochemistry was 99% for CRC and 96% for non-CRC. The overall percent agreement between the LMR and Promega pentaplex panels was 99% for CRC and 89% for non-CRC tumors. An increased number of unstable markers and the larger size shifts observed in dMMR tumors using the LMR panel increased confidence in MSI determinations. The LMR MSI Analysis System expands the spectrum of cancer types in which MSI can be accurately detected.

2.
PLoS One ; 10(8): e0132727, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26252492

RESUMO

Microsatellite instability (MSI) occurs in over 90% of Lynch syndrome cancers and is considered a hallmark of the disease. MSI is an early event in colon tumor development, but screening polyps for MSI remains controversial because of reduced sensitivity compared to more advanced neoplasms. To increase sensitivity, we investigated the use of a novel type of marker consisting of long mononucleotide repeat (LMR) tracts. Adenomas from 160 patients, ranging in age from 29-55 years old, were screened for MSI using the new markers and compared with current marker panels and immunohistochemistry standards. Overall, 15 tumors were scored as MSI-High using the LMRs compared to 9 for the NCI panel and 8 for the MSI Analysis System (Promega). This difference represents at least a 1.7-fold increase in detection of MSI-High lesions over currently available markers. Moreover, the number of MSI-positive markers per sample and the size of allelic changes were significantly greater with the LMRs (p = 0.001), which increased confidence in MSI classification. The overall sensitivity and specificity of the LMR panel for detection of mismatch repair deficient lesions were 100% and 96%, respectively. In comparison, the sensitivity and specificity of the MSI Analysis System were 67% and 100%; and for the NCI panel, 75% and 97%. The difference in sensitivity between the LMR panel and the other panels was statistically significant (p<0.001). The increased sensitivity for detection of MSI-High phenotype in early colorectal lesions with the new LMR markers indicates that MSI screening for the early detection of Lynch syndrome might be feasible.


Assuntos
Neoplasias Colorretais/genética , Detecção Precoce de Câncer/métodos , Instabilidade de Microssatélites , Adulto , Alelos , Biomarcadores Tumorais/genética , Reparo de Erro de Pareamento de DNA/genética , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas B-raf/genética , Sensibilidade e Especificidade
3.
PLoS One ; 9(11): e113489, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25423036

RESUMO

Genomic studies of human high-grade gliomas have discovered known and candidate tumor drivers. Studies in both cell culture and mouse models have complemented these approaches and have identified additional genes and processes important for gliomagenesis. Previously, we found that mobilization of Sleeping Beauty transposons in mice ubiquitously throughout the body from the Rosa26 locus led to gliomagenesis with low penetrance. Here we report the characterization of mice in which transposons are mobilized in the Glial Fibrillary Acidic Protein (GFAP) compartment. Glioma formation in these mice did not occur on an otherwise wild-type genetic background, but rare gliomas were observed when mobilization occurred in a p19Arf heterozygous background. Through cloning insertions from additional gliomas generated by transposon mobilization in the Rosa26 compartment, several candidate glioma genes were identified. Comparisons to genetic, epigenetic and mRNA expression data from human gliomas implicates several of these genes as tumor suppressor genes and oncogenes in human glioblastoma.


Assuntos
Neoplasias Encefálicas/genética , Elementos de DNA Transponíveis , Glioma/genética , Animais , Sequência de Bases , Primers do DNA , Proteína Glial Fibrilar Ácida/genética , Camundongos , Reação em Cadeia da Polimerase , Transposases/genética
4.
Radiat Res ; 182(3): 310-5, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25076114

RESUMO

Most murine radiation-induced acute myeloid leukemias involve biallelic inactivation of the PU.1 gene, with one allele being lost through a radiation-induced chromosomal deletion and the other allele affected by a recurrent point mutation in codon 235 that is likely to be spontaneous. The short latencies of acute myeloid leukemias occurring in nonirradiated mice engineered with PU.1 conditional knockout or knockdown alleles suggest that once both copies of PU.1 have been lost any other steps involved in leukemogenesis occur rapidly. Yet, spontaneous acute myeloid leukemias have not been reported in mice heterozygous for a PU.1 knockout allele, an observation that conflicts with the understanding that the PU.1 codon 235 mutation is spontaneous. Here we describe experiments that show that the lack of spontaneous leukemia in PU.1 heterozygous knockout mice is not due to insufficient monitoring times or mouse numbers or the genetic background of the knockout mice. The results reveal that spontaneous leukemias that develop in mice of the mixed 129S2/SvPas and C57BL/6 background of knockout mice arise by a pathway that does not involve biallelic PU.1 mutation. In addition, the latency of radiation-induced leukemia in PU.1 heterozygous mice on a genetic background susceptible to radiation-induced leukemia indicates that the codon 235 mutation is not a rate-limiting step in radiation leukemogenesis driven by PU.1 loss.


Assuntos
Leucemia Mieloide Aguda/etiologia , Leucemia Induzida por Radiação/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Animais , Deleção Cromossômica , Códon , Heterozigoto , Leucemia Mieloide Aguda/genética , Leucemia Induzida por Radiação/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Instabilidade de Microssatélites , Mutação , Tirosina Quinase 3 Semelhante a fms/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA