Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(8): eabd8056, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35213226

RESUMO

Understanding the immune response to hydrogel implantation is critical for the design of immunomodulatory biomaterials. To study the progression of inflammation around poly(ethylene glycol) hydrogels presenting Arg-Gly-Asp (RGD) peptides and vascular endothelial growth factor, we used temporal analysis of high-dimensional flow cytometry data paired with intravital imaging, immunohistochemistry, and multiplexed proteomic profiling. RGD-presenting hydrogels created a reparative microenvironment promoting CD206+ cellular infiltration and revascularization in wounded dorsal skin tissue. Unbiased clustering algorithms (SPADE) revealed significant phenotypic transition shifts as a function of the cell-adhesion hydrogel properties. SPADE identified an intermediate macrophage subset functionally regulating in vivo cytokine secretion that was preferentially recruited for RGD-presenting hydrogels, whereas dendritic cell subsets were preferentially recruited to RDG-presenting hydrogels. Last, RGD-presenting hydrogels controlled macrophage functional cytokine secretion to direct polarization and vascularization. Our studies show that unbiased clustering of single-cell data provides unbiased insights into the underlying immune response to engineered materials.


Assuntos
Hidrogéis , Fator A de Crescimento do Endotélio Vascular , Materiais Biocompatíveis/química , Análise por Conglomerados , Citocinas , Hidrogéis/química , Imunidade , Oligopeptídeos/química , Proteômica
2.
Cytotherapy ; 24(6): 608-618, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35190267

RESUMO

Cell therapies are expected to increase over the next decade owing to increasing demand for clinical applications. Mesenchymal stromal cells (MSCs) have been explored to treat a number of diseases, with some successes in early clinical trials. Despite early successes, poor MSC characterization results in lessened therapeutic capacity once in vivo. Here, we characterized MSCs derived from bone marrow (BM), adipose tissue and umbilical cord tissue for sphingolipids (SLs), a class of bioactive lipids, using liquid chromatography/tandem mass spectrometry. We found that ceramide levels differed based on the donor's sex in BM-MSCs. We detected fatty acyl chain variants in MSCs from all three sources. Linear discriminant analysis revealed that MSCs separated based on tissue source. Principal component analysis showed that interferon-γ-primed and unstimulated MSCs separated according to their SL signature. Lastly, we detected higher ceramide levels in low indoleamine 2,3-dioxygenase MSCs, indicating that sphingomyelinase or ceramidase enzymatic activity may be involved in their immune potency.


Assuntos
Células-Tronco Mesenquimais , Esfingolipídeos , Tecido Adiposo , Células da Medula Óssea , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Ceramidas , Humanos , Lipidômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA