Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(30): 12077-12085, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39092117

RESUMO

The α-functionalisation of N-containing compounds is an area of broad interest in synthetic chemistry due to their presence in biologically active substances among others. Visible light-induced generation of nucleophilic α-aminoalkyl radicals as reactive intermediates that can be trapped by electron-deficient alkenes presents an attractive and mild approach to achieve said functionalisation. In this work, [Fe(iii)(phtmeimb)2]PF6 (phtmeimb = phenyl(tris(3-methylimidazol-2-ylidene))borate), an N-heterocyclic carbene (NHC) complex based on Earth-abundant iron, was used as photoredox catalyst to efficiently drive the formation of α-aminoalkyl radicals from a range of different α-trimethylsilylamines and their subsequent addition to a number of electron-deficient alkenes under green light irradiation. Mechanistic investigations elucidated the different reaction steps of the complete photocatalytic cycle. In terms of yields and substrate scope, we show that [Fe(iii)(phtmeimb)2]PF6 can compete with noble metal photoredox catalysts, for instance outcompeting archetypal [Ru(bpy)3]Cl2 under comparable reaction conditions, illustrating that iron photocatalysts can efficiently facilitate photoredox reactions of synthetic value.

2.
Inorg Chem ; 63(27): 12457-12468, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38934422

RESUMO

Iron-centered N-heterocyclic carbene compounds have attracted much attention in recent years due to their long-lived excited states with charge transfer (CT) character. Understanding the orbital interactions between the metal and ligand orbitals is of great importance for the rational tuning of the transition metal compound properties, e.g., for future photovoltaic and photocatalytic applications. Here, we investigate a series of iron-centered N-heterocyclic carbene complexes with +2, + 3, and +4 oxidation states of the central iron ion using iron L-edge and nitrogen K-edge X-ray absorption spectroscopy (XAS). The experimental Fe L-edge XAS data were simulated and interpreted through restricted-active space (RAS) and multiplet calculations. The experimental N K-edge XAS is simulated and compared with time-dependent density functional theory (TDDFT) calculations. Through the combination of the complementary Fe L-edge and N K-edge XAS, direct probing of the complex interplay of the metal and ligand character orbitals was possible. The σ-donating and π-accepting capabilities of different ligands are compared, evaluated, and discussed. The results show how X-ray spectroscopy, together with advanced modeling, can be a powerful tool for understanding the complex interplay of metal and ligand.

4.
Inorg Chem ; 63(6): 2909-2918, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38301278

RESUMO

We here report the synthesis of the homoleptic iron(II) N-heterocyclic carbene (NHC) complex [Fe(miHpbmi)2](PF6)4 (miHpbmi = 4-((3-methyl-1H-imidazolium-1-yl)pyridine-2,6-diyl)bis(3-methylimidazol-2-ylidene)) and its electrochemical and photophysical properties. The introduction of the π-electron-withdrawing 3-methyl-1H-imidazol-3-ium-1-yl group into the NHC ligand framework resulted in stabilization of the metal-to-ligand charge transfer (MLCT) state and destabilization of the metal-centered (MC) states. This resulted in an improved excited-state lifetime of 16 ps compared to the 9 ps for the unsubstituted parent compound [Fe(pbmi)2](PF6)2 (pbmi = (pyridine-2,6-diyl)bis(3-methylimidazol-2-ylidene)) as well as a stronger MLCT absorption band extending more toward the red spectral region. However, compared to the carboxylic acid derivative [Fe(cpbmi)2](PF6)2 (cpbmi = 1,1'-(4-carboxypyridine-2,6-diyl)bis(3-methylimidazol-2-ylidene)), the excited-state lifetime of [Fe(miHpbmi)2](PF6)4 is the same, but both the extinction and the red shift are more pronounced for the former. Hence, this makes [Fe(miHpbmi)2](PF6)4 a promising pH-insensitive analogue of [Fe(cpbmi)2](PF6)2. Finally, the excited-state dynamics of the title compound [Fe(miHpbmi)2](PF6)4 was investigated in solvents with different viscosities, however, showing very little dependency of the depopulation of the excited states on the properties of the solvent used.

5.
Inorg Chem ; 63(10): 4461-4473, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38421802

RESUMO

Two iron complexes featuring the bidentate, nonconjugated N-heterocyclic carbene (NHC) 1,1'-methylenebis(3-methylimidazol-2-ylidene) (mbmi) ligand, where the two NHC moieties are separated by a methylene bridge, have been synthesized to exploit the combined influence of geometric and electronic effects on the ground- and excited-state properties of homoleptic FeIII-hexa-NHC [Fe(mbmi)3](PF6)3 and heteroleptic FeII-tetra-NHC [Fe(mbmi)2(bpy)](PF6)2 (bpy = 2,2'-bipyridine) complexes. They are compared to the reported FeIII-hexa-NHC [Fe(btz)3](PF6)3 and FeII-tetra-NHC [Fe(btz)2(bpy)](PF6)2 complexes containing the conjugated, bidentate mesoionic NHC ligand 3,3'-dimethyl-1,1'-bis(p-tolyl)-4,4'-bis(1,2,3-triazol-5-ylidene) (btz). The observed geometries of [Fe(mbmi)3](PF6)3 and [Fe(mbmi)2(bpy)](PF6)2 are evaluated through L-Fe-L bond angles and ligand planarity and compared to those of [Fe(btz)3](PF6)3 and [Fe(btz)2(bpy)](PF6)2. The FeII/FeIII redox couples of [Fe(mbmi)3](PF6)3 (-0.38 V) and [Fe(mbmi)2(bpy)](PF6)2 (-0.057 V, both vs Fc+/0) are less reducing than [Fe(btz)3](PF6)3 and [Fe(btz)2(bpy)](PF6)2. The two complexes show intense absorption bands in the visible region: [Fe(mbmi)3](PF6)3 at 502 nm (ligand-to-metal charge transfer, 2LMCT) and [Fe(mbmi)2(bpy)](PF6)2 at 410 and 616 nm (metal-to-ligand charge transfer, 3MLCT). Lifetimes of 57.3 ps (2LMCT) for [Fe(mbmi)3](PF6)3 and 7.6 ps (3MLCT) for [Fe(mbmi)2(bpy)](PF6)2 were probed and are somewhat shorter than those for [Fe(btz)3](PF6)3 and [Fe(btz)2(bpy)](PF6)2. [Fe(mbmi)3](PF6)3 exhibits photoluminescence at 686 nm (2LMCT) in acetonitrile at room temperature with a quantum yield of (1.2 ± 0.1) × 10-4, compared to (3 ± 0.5) × 10-4 for [Fe(btz)3](PF6)3.

6.
J Am Chem Soc ; 145(17): 9369-9388, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37079887

RESUMO

Photoredox catalysis of organic reactions driven by iron has attracted substantial attention throughout recent years, due to potential environmental and economic benefits. In this Perspective, three major strategies were identified that have been employed to date to achieve reactivities comparable to the successful noble metal photoredox catalysis: (1) Direct replacement of a noble metal center by iron in archetypal polypyridyl complexes, resulting in a metal-centered photofunctional state. (2) In situ generation of photoactive complexes by substrate coordination where the reactions are driven via intramolecular electron transfer involving charge-transfer states, for example, through visible-light-induced homolysis. (3) Improving the excited-state lifetimes and redox potentials of the charge-transfer states of iron complexes through new ligand design. We seek to give an overview and evaluation of recent developments in this rapidly growing field and, at the same time, provide an outlook on the future of iron-based photoredox catalysis.

7.
Inorg Chem ; 61(44): 17515-17526, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36279568

RESUMO

Fe(III) complexes with N-heterocyclic carbene (NHC) ligands belong to the rare examples of Earth-abundant transition metal complexes with long-lived luminescent charge-transfer excited states that enable applications as photosensitizers for charge separation reactions. We report three new hexa-NHC complexes of this class: [Fe(brphtmeimb)2]PF6 (brphtmeimb = [(4-bromophenyl)tris(3-methylimidazol-2-ylidene)borate]-, [Fe(meophtmeimb)2]PF6 (meophtmeimb = [(4-methoxyphenyl)tris(3-methylimidazol-2-ylidene)borate]-, and [Fe(coohphtmeimb)2]PF6 (coohphtmeimb = [(4-carboxyphenyl)tris(3-methylimidazol-2-ylidene)borate]-. These were derived from the parent complex [Fe(phtmeimb)2]PF6 (phtmeimb = [phenyltris(3-methylimidazol-2-ylidene)borate]- by modification with electron-withdrawing and electron-donating substituents, respectively, at the 4-phenyl position of the ligand framework. All three Fe(III) hexa-NHC complexes were characterized by NMR spectroscopy, high-resolution mass spectroscopy, elemental analysis, single crystal X-ray diffraction analysis, electrochemistry, Mößbauer spectroscopy, electronic spectroscopy, magnetic susceptibility measurements, and quantum chemical calculations. Their ligand-to-metal charge-transfer (2LMCT) excited states feature nanosecond lifetimes (1.6-1.7 ns) and sizable emission quantum yields (1.7-1.9%) through spin-allowed transition to the doublet ground state (2GS), completely in line with the parent complex [Fe(phtmeimb)2]PF6 (2.0 ns and 2.1%). The integrity of the favorable excited state characteristics upon substitution of the ligand framework demonstrates the robustness of the scorpionate motif that tolerates modifications in the 4-phenyl position for applications such as the attachment in molecular or hybrid assemblies.

8.
Sci Rep ; 11(1): 22144, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772983

RESUMO

Two photoactive iron N-heterocyclic carbene complexes [Formula: see text] and [Formula: see text], where btz is 3,3'-dimethyl-1,1'-bis(p-tolyl)-4,4'-bis(1,2,3-triazol-5-ylidene) and bpy is 2,2'-bipyridine, have been investigated by Resonant Photoelectron Spectroscopy (RPES). Tuning the incident X-ray photon energy to match core-valence excitations provides a site specific probe of the electronic structure properties and ligand-field interactions, as well as information about the resonantly photo-oxidised final states. Comparing measurements of the Fe centre and the surrounding ligands demonstrate strong mixing of the Fe [Formula: see text] levels with occupied ligand [Formula: see text] orbitals but weak mixing with the corresponding unoccupied ligand orbitals. This highlights the importance of [Formula: see text]-accepting and -donating considerations in ligand design strategies for photofunctional iron carbene complexes. Spin-propensity is also observed as a final-state effect in the RPES measurements of the open-shell [Formula: see text] complex. Vibronic coupling is evident in both complexes, where the energy dispersion hints at a vibrationally hot final state. The results demonstrate the significant impact of the iron oxidation state on the frontier electronic structure and highlights the differences between the emerging class of [Formula: see text] photosensitizers from those of more traditional [Formula: see text] complexes.

9.
Chemistry ; 27(42): 10883-10897, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-33908678

RESUMO

A bis(18-crown-6) Tröger's base receptor and 4-substituted hepta-1,7-diyl bisammonium salt ligands have been used as a model system to study the interactions between non-polar side chains of peptides and an aromatic cavity of a protein. NMR titrations and NOESY/ROESY NMR spectroscopy were used to analyze the discrimination of the ligands by the receptor based on the substituent of the ligand, both quantitatively (free binding energies) and qualitatively (conformations). The analysis showed that an all-anti conformation of the heptane chain was preferred for most of the ligands, both free and when bound to the receptor, and that for all of the receptor-ligand complexes, the substituent was located inside or partly inside of the aromatic cavity of the receptor. We estimated the free binding energy of a methyl- and a phenyl group to an aromatic cavity, via CH-π, and combined aromatic CH-π and π-π interactions to be -1.7 and -3.3 kJ mol-1 , respectively. The experimental results were used to assess the accuracy of different computational methods, including molecular mechanics (MM) and density functional theory (DFT) methods, showing that MM was superior.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Ligantes , Espectroscopia de Ressonância Magnética , Conformação Molecular
10.
Chemistry ; 26(56): 12728-12732, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-32369645

RESUMO

A homoleptic organometallic FeIV complex that is stable in both solution and in the solid state at ambient conditions has been synthesized and isolated as [Fe(phtmeimb)2 ](PF6 )2 (phtmeimb=[phenyl(tris(3-methylimidazolin-2-ylidene))borate]- ). This FeIV N-heterocyclic carbene (NHC) complex was characterized by 1 H NMR, HR-MS, elemental analysis, scXRD analysis, electrochemistry, Mößbauer spectroscopy, and magnetic susceptibility. The two latter techniques unequivocally demonstrate that [Fe(phtmeimb)2 ](PF6 )2 is a triplet FeIV low-spin S=1 complex in the ground state, in agreement with quantum chemical calculations. The electronic absorption spectrum of [Fe(phtmeimb)2 ](PF6 )2 in acetonitrile shows an intense absorption band in the red and near IR, due to LMCT (ligand-to-metal charge transfer) excitation. For the first time the excited state dynamics of a FeIV complex was studied and revealed a ≈0.8 ps lifetime of the 3 LMCT excited state of [Fe(phtmeimb)2 ](PF6 )2 in acetonitrile.

11.
J Am Chem Soc ; 142(19): 8565-8569, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32307993

RESUMO

Photoinduced bimolecular charge transfer processes involving the iron(III) N-heterocyclic carbene (FeNHC) photosensitizer [Fe(phtmeimb)2]+ (phtmeimb = phenyltris(3-methyl-imidazolin-2-ylidene)borate) and triethylamine as well as N,N-dimethylaniline donors have been studied using optical spectroscopy. The full photocycle of charge separation and recombination down to ultrashort time scales was studied by investigating the excited-state dynamics up to high quencher concentrations. The unconventional doublet ligand-to-metal charge transfer (2LMCT) photoactive excited state exhibits donor-dependent charge separation rates of up to 1.25 ps-1 that exceed the rates found for typical ruthenium-based systems and are instead more similar to results reported for organic sensitizers. The ultrafast charge transfer probed at high electron donor concentrations outpaces the solvent dynamics and goes beyond the classical Marcus electron transfer regime. Poor photoproduct yields are explained by donor-independent, fast charge recombination with rates of ∼0.2 ps-1, thus inhibiting cage escape and photoproduct formation. This study thus shows that the ultimate bottlenecks for bimolecular photoredox processes involving these FeNHC photosensitizers can only be determined from the ultrafast dynamics of the full photocycle, which is of particular importance when the bimolecular charge transfer processes are not limited by the intrinsic excited-state lifetime of the photosensitizer.


Assuntos
Boratos/química , Elétrons , Etilaminas/química , Compostos Férricos/química , Luz , Fármacos Fotossensibilizantes/química , Estrutura Molecular , Processos Fotoquímicos , Solventes/química
12.
Phys Chem Chem Phys ; 22(16): 9067-9073, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32297625

RESUMO

Iron centered N-heterocyclic carbene (Fe-NHC) complexes have shown long-lived excited states with charge transfer character useful for light harvesting applications. Understanding the nature of the metal-ligand bond is of fundamental importance to rationally tailor the properties of transition metal complexes. The high-energy-resolution fluorescence detected X-ray absorption near edge structure (HERFD-XANES) has been used to probe the valence orbitals of three carbene complexes, [FeII(bpy)(btz)2](PF6)2 (bpy = 2,2'-bipyridine, btz = 3,3'-dimethyl-1,1'-bis(p-tolyl)-4,4'-bis(1,2,3-triazol-5-ylidene)), [FeIII(btz)3](PF6)3, and [FeIII(phtmeimb)2]PF6 (phtmeimb = [phenyl(tris(3-methylimidazol-2-ylidene))borate]-). The multiconfigurational restrict active space (RAS) approach has been used to simulate the metal K pre-edge X-ray absorption spectroscopy of these carbene complexes, and have reproduced the metal K pre-edge spectral features in terms of relative intensity and peak positions. The evident intensity difference between the FeII and the other two FeIII complexes has been elucidated with different intensity mechanisms in the transition. The smaller splitting between the t2g and eg character peak for [FeIII(btz)3](PF6)3 has been observed in the experimental measurements and been reproduced in the RAS calculations. The results show how the combination of experimental HERFD-XANES measurements and ab initio RAS simulations can give quantitative evaluation of the orbital interactions between metal and ligands for such large and strongly interacting systems and thus allow to understand and predict properties of novel complexes.

13.
J Phys Chem A ; 124(8): 1603-1609, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32011141

RESUMO

We present the first experimental study of the frontier orbitals in an ultrathin film of the novel hexa-carbene photosensitizer [Fe(btz)3]3+, where btz is 3,3'-dimethyl-1,1'-bis(p-tolyl)-4,4'-bis(1,2,3-triazol-5-ylidene). Resonant photoelectron spectroscopy (RPES) was used to probe the electronic structure of films where the molecular and oxidative integrities had been confirmed with optical and X-ray spectroscopies. In combination with density functional theory calculations, RPES measurements provided direct and site-selective information about localization and interactions of occupied and unoccupied molecular orbitals. Fe 2p, N 1s, and C 1s measurements selectively probed the metal, carbene, and side-group contributions revealing strong metal-ligand orbital mixing of the frontier orbitals. This helps explain the remarkable photophysical properties of iron-carbenes in terms of unconventional electronic structure properties and favorable metal-ligand bonding interactions-important for the continued development of these type of complexes toward light-harvesting and light-emitting applications.

14.
Angew Chem Int Ed Engl ; 59(1): 364-372, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31602726

RESUMO

Iron N-heterocyclic carbene (NHC) complexes have received a great deal of attention recently because of their growing potential as light sensitizers or photocatalysts. We present a sub-ps X-ray spectroscopy study of an FeII NHC complex that identifies and quantifies the states involved in the deactivation cascade after light absorption. Excited molecules relax back to the ground state along two pathways: After population of a hot 3 MLCT state, from the initially excited 1 MLCT state, 30 % of the molecules undergo ultrafast (150 fs) relaxation to the 3 MC state, in competition with vibrational relaxation and cooling to the relaxed 3 MLCT state. The relaxed 3 MLCT state then decays much more slowly (7.6 ps) to the 3 MC state. The 3 MC state is rapidly (2.2 ps) deactivated to the ground state. The 5 MC state is not involved in the deactivation pathway. The ultrafast partial deactivation of the 3 MLCT state constitutes a loss channel from the point of view of photochemical efficiency and highlights the necessity to screen transition-metal complexes for similar ultrafast decays to optimize photochemical performance.

15.
Faraday Discuss ; 216(0): 191-210, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31016293

RESUMO

Ultrafast dynamics of photoinduced charge transfer processes in light-harvesting systems based on Earth-abundant transition metal complexes are of current interest for the development of molecular devices for solar energy conversion applications. A combination of ultrafast spectroscopy and first principles quantum chemical calculations of a recently synthesized iron carbene complex is used to elucidate the ultrafast excited state evolution processes in these systems with particular emphasis on investigating the underlying reasons why these complexes show promise in terms of significantly extended lifetimes of charge transfer excited states. Together, our results challenge the traditional excited state landscape for iron-based light harvesting transition metal complexes through radically different ground and excited state properties in alternative oxidation states. This includes intriguing indications of rich band-selective excited state dynamics on ultrafast timescales that are interpreted in terms of excitation energy dependence for excitations into a manifold of charge-transfer states. Some implications of the observed excited state properties and photoinduced dynamics for the utilization of iron carbene complexes for solar energy conversion applications are finally discussed.

16.
Science ; 363(6424): 249-253, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30498167

RESUMO

Iron's abundance and rich coordination chemistry are potentially appealing features for photochemical applications. However, the photoexcitable charge-transfer states of most iron complexes are limited by picosecond or subpicosecond deactivation through low-lying metal-centered states, resulting in inefficient electron-transfer reactivity and complete lack of photoluminescence. In this study, we show that octahedral coordination of iron(III) by two mono-anionic facial tris-carbene ligands can markedly suppress such deactivation. The resulting complex [Fe(phtmeimb)2]+, where phtmeimb is {phenyl[tris(3-methylimidazol-1-ylidene)]borate}-, exhibits strong, visible, room temperature photoluminescence with a 2.0-nanosecond lifetime and 2% quantum yield via spin-allowed transition from a doublet ligand-to-metal charge-transfer (2LMCT) state to the doublet ground state. Reductive and oxidative electron-transfer reactions were observed for the 2LMCT state of [Fe(phtmeimb)2]+ in bimolecular quenching studies with methylviologen and diphenylamine.

17.
Chem Sci ; 9(2): 405-414, 2018 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-29629111

RESUMO

Recent years have seen the development of new iron-centered N-heterocyclic carbene (NHC) complexes for solar energy applications. Compared to typical ligand systems, the NHC ligands provide Fe complexes with longer-lived metal-to-ligand charge transfer (MLCT) states. This increased lifetime is ascribed to strong ligand field splitting provided by the NHC ligands that raises the energy levels of the metal centered (MC) states and therefore reduces the deactivation efficiency of MLCT states. Among currently known NHC systems, [Fe(btbip)2]2+ (btbip = 2,6-bis(3-tert-butyl-imidazol-1-ylidene)pyridine) is a unique complex as it exhibits a short-lived MC state with a lifetime on the scale of a few hundreds of picoseconds. Hence, this complex allows for a detailed investigation, using 100 ps X-ray pulses from a synchrotron, of strong ligand field effects on the intermediate MC state in an NHC complex. Here, we use time-resolved wide angle X-ray scattering (TRWAXS) aided by density functional theory (DFT) to investigate the molecular structure, energetics and lifetime of the high-energy MC state in the Fe-NHC complex [Fe(btbip)2]2+ after excitation to the MLCT manifold. We identify it as a 260 ps metal-centered quintet (5MC) state, and we refine the molecular structure of the excited-state complex verifying the DFT results. Using information about the hydrodynamic state of the solvent, we also determine, for the first time, the energy of the 5MC state as 0.75 ± 0.15 eV. Our results demonstrate that due to the increased ligand field strength caused by NHC ligands, upon transition from the ground state to the 5MC state, the metal to ligand bonds extend by unusually large values: by 0.29 Å in the axial and 0.21 Å in the equatorial direction. These results imply that the transition in the photochemical properties from typical Fe complexes to novel NHC compounds is manifested not only in the destabilization of the MC states, but also in structural distortion of these states.

18.
Chem Sci ; 8(1): 515-523, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451198

RESUMO

Developing light-harvesting and photocatalytic molecules made with iron could provide a cost effective, scalable, and environmentally benign path for solar energy conversion. To date these developments have been limited by the sub-picosecond metal-to-ligand charge transfer (MLCT) electronic excited state lifetime of iron based complexes due to spin crossover - the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand iron complexes with four cyanide (CN-) ligands and one 2,2'-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL) Kß hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN)4(bpy)]2-. The two experimental techniques are highly complementary; the time-resolved UV-visible measurement probes allowed electronic transitions between valence states making it sensitive to ligand-centered electronic states such as MLCT states, whereas the Kß fluorescence spectroscopy provides a sensitive measure of changes in the Fe spin state characteristic of metal-centered excited states. We conclude that the MLCT excited state of [Fe(CN)4(bpy)]2- decays with roughly a 20 ps lifetime without undergoing spin crossover, exceeding the MLCT excited state lifetime of [Fe(2,2'-bipyridine)3]2+ by more than two orders of magnitude.

19.
ChemSusChem ; 9(7): 667-75, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27010851

RESUMO

Iron-carbene complexes show considerable promise as earth-abundant light-harvesters, and adsorption onto nanostructured TiO2 is a crucial step for developing solar energy applications. Intrinsic electron injection capabilities of such promising Fe(II) N-heterocyclic complexes (Fe-NHC) to TiO2 are calculated here, and found to correlate well with recent experimental findings of highly efficient interfacial injection. First, we examine the special bonding characteristics of Fe-NHC light harvesters. The excited-state surfaces are examined using density functional theory (DFT) and time-dependent DFT (TD-DFT) to explore relaxed excited-state properties. Finally, by relaxing an Fe-NHC adsorbed on a TiO2 nanocluster, we show favorable injection properties in terms of interfacial energy level alignment and electronic coupling suitable for efficient electron injection of excited electrons from the Fe complex into the TiO2 conduction band on ∼100 fs time scales.


Assuntos
Ferro/metabolismo , Luz
20.
Nat Chem ; 7(11): 883-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26492008

RESUMO

Solar energy conversion in photovoltaics or photocatalysis involves light harvesting, or sensitization, of a semiconductor or catalyst as a first step. Rare elements are frequently used for this purpose, but they are obviously not ideal for large-scale implementation. Great efforts have been made to replace the widely used ruthenium with more abundant analogues like iron, but without much success due to the very short-lived excited states of the resulting iron complexes. Here, we describe the development of an iron-nitrogen-heterocyclic-carbene sensitizer with an excited-state lifetime that is nearly a thousand-fold longer than that of traditional iron polypyridyl complexes. By the use of electron paramagnetic resonance, transient absorption spectroscopy, transient terahertz spectroscopy and quantum chemical calculations, we show that the iron complex generates photoelectrons in the conduction band of titanium dioxide with a quantum yield of 92% from the (3)MLCT (metal-to-ligand charge transfer) state. These results open up possibilities to develop solar energy-converting materials based on abundant elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA