Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cancer Res ; 78(21): 6257-6267, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30135191

RESUMO

Activation of p53 by inhibitors of the p53-MDM2 interaction is being pursued as a therapeutic strategy in p53 wild-type cancers. Here, we report distinct mechanisms by which the novel, potent, and selective inhibitor of the p53-MDM2 interaction HDM201 elicits therapeutic efficacy when applied at various doses and schedules. Continuous exposure of HDM201 led to induction of p21 and delayed accumulation of apoptotic cells. By comparison, high-dose pulses of HDM201 were associated with marked induction of PUMA and a rapid onset of apoptosis. shRNA screens identified PUMA as a mediator of the p53 response specifically in the pulsed regimen. Consistent with this, the single high-dose HDM201 regimen resulted in rapid and marked induction of PUMA expression and apoptosis together with downregulation of Bcl-xL in vivo Knockdown of Bcl-xL was identified as the top sensitizer to HDM201 in vitro, and Bcl-xL was enriched in relapsing tumors from mice treated with intermittent high doses of HDM201. These findings define a regimen-dependent mechanism by which disruption of MDM2-p53 elicits therapeutic efficacy when given with infrequent dosing. In an ongoing HDM201 trial, the observed exposure-response relationship indicates that the molecular mechanism elicited by pulse dosing is likely reproducible in patients. These data support the clinical comparison of daily and intermittent regimens of p53-MDM2 inhibitors.Significance: Pulsed high doses versus sustained low doses of the p53-MDM2 inhibitor HDM201 elicit a proapoptotic response from wild-type p53 cancer cells, offering guidance to current clinical trials with this and other drugs that exploit the activity of p53. Cancer Res; 78(21); 6257-67. ©2018 AACR.


Assuntos
Antineoplásicos/administração & dosagem , Imidazóis/administração & dosagem , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Pirimidinas/administração & dosagem , Pirróis/administração & dosagem , Proteína Supressora de Tumor p53/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Apoptose , Área Sob a Curva , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazóis/farmacologia , Estimativa de Kaplan-Meier , Dose Máxima Tolerável , Camundongos , Transplante de Neoplasias , Pirimidinas/farmacologia , Pirróis/farmacologia , RNA Interferente Pequeno/metabolismo , Fatores de Tempo , Proteína bcl-X/metabolismo
2.
Elife ; 42015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25965177

RESUMO

Biomarkers for patient selection are essential for the successful and rapid development of emerging targeted anti-cancer therapeutics. In this study, we report the discovery of a novel patient selection strategy for the p53-HDM2 inhibitor NVP-CGM097, currently under evaluation in clinical trials. By intersecting high-throughput cell line sensitivity data with genomic data, we have identified a gene expression signature consisting of 13 up-regulated genes that predicts for sensitivity to NVP-CGM097 in both cell lines and in patient-derived tumor xenograft models. Interestingly, these 13 genes are known p53 downstream target genes, suggesting that the identified gene signature reflects the presence of at least a partially activated p53 pathway in NVP-CGM097-sensitive tumors. Together, our findings provide evidence for the use of this newly identified predictive gene signature to refine the selection of patients with wild-type p53 tumors and increase the likelihood of response to treatment with p53-HDM2 inhibitors, such as NVP-CGM097.


Assuntos
Biomarcadores/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Isoquinolinas/farmacologia , Neoplasias/tratamento farmacológico , Seleção de Pacientes , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Transferência Ressonante de Energia de Fluorescência , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo
3.
Acta Neuropathol Commun ; 2: 165, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25510661

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a primary progressive neurodegenerative disease characterised by neuronal loss of lower motor neurons (in the spinal cord and brainstem) and/or upper motor neurons (in the motor cortex) and subsequent denervation atrophy of skeletal muscle. AIM: A comprehensive examination of muscle pathology from a cohort of clinically confirmed ALS patients, including an investigation of inflammation, complement activation, and deposition of abnormal proteins in order to compare them with findings from an age-matched, control group. MATERIAL AND METHODS: 31 muscle biopsies from clinically confirmed ALS patients and 20 normal controls underwent a comprehensive protocol of histochemical and immunohistochemical stains, including HLA-ABC, C5b-9, p62, and TDP-43. RESULTS: Neurogenic changes were confirmed in 30/31 ALS cases. In one case, no neurogenic changes could be detected. Muscle fibre necrosis was seen in 5/31 cases and chronic mononuclear inflammatory cell infiltration in 5/31 (2 of them overlapped with those showing muscle necrosis). In four biopsies there was an increase in the proportion of cytochrome oxidase (COX) negative fibres (2-3%). p62 faintly stained cytoplasmic bodies in eight cases and none were immunoreactive to TDP-43. CONCLUSION: This large series of muscle biopsies from patients with ALS demonstrates neurogenic atrophy is a nearly uniform finding and that mild mitochondrial abnormalities and low-grade inflammation can be seen and do not rule out the diagnosis of ALS. These findings could lend support to the notion that ALS is a complex and heterogeneous disorder.


Assuntos
Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/patologia , Mitocôndrias/imunologia , Mitocôndrias/patologia , Músculo Esquelético/patologia , Adulto , Esclerose Lateral Amiotrófica/sangue , Biópsia , Estudos de Coortes , Proteínas de Ligação a DNA/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/imunologia , Necrose , Proteínas de Ligação a RNA/metabolismo
4.
J Clin Immunol ; 27(6): 568-79, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17641957

RESUMO

Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine that mainly acts as an inhibitor of immune functions. A lack of functional TGF-beta leads to autoimmune disease in animal models and dysregulated TGF-beta signaling is implicated in human autoimmune diseases. To define target genes that play a part in the inhibitory role of TGF-beta in the immune system, we have identified genes stimulated by TGF-beta in macrophages by gene-chip analysis. One of the TGF-beta regulated genes is carboxypeptidase D (CpD), a 180-kDa type I membrane protein. We have demonstrated that CpD is regulated by TGF-beta in various cell types of both, murine and human origin and, interestingly, is significantly downregulated in CD14 positive cells isolated from patients with lupus erythematosus (LE). Moreover, we show that downregulation of CpD leads to downmodulation of TGF-beta itself, suggesting a role for CpD in a positive feedback loop, providing further evidence for a role of this enzyme in LE. To our knowledge, this is the first report that demonstrates carboxypeptidase D as a TGF-beta target gene that is implicated in the pathogenesis of LE.


Assuntos
Carboxipeptidases/antagonistas & inibidores , Carboxipeptidases/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Lúpus Eritematoso Sistêmico/enzimologia , Lúpus Eritematoso Sistêmico/genética , Fator de Crescimento Transformador beta/fisiologia , Adulto , Animais , Carboxipeptidases/biossíntese , Linhagem Celular , Linhagem Celular Tumoral , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Indução Enzimática/genética , Indução Enzimática/imunologia , Retroalimentação Fisiológica/imunologia , Feminino , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Macrófagos/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Regulação para Cima/genética , Regulação para Cima/imunologia
5.
Blood ; 101(2): 498-507, 2003 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-12393416

RESUMO

We have investigated the role of Smad family proteins, known to be important cytoplasmic mediators of signals from the transforming growth factor-beta (TGF-beta) receptor serine/threonine kinases, in TGF-beta-dependent differentiation of hematopoietic cells, using as a model the human promyelocytic leukemia cell line, HL-60. TGF-beta-dependent differentiation of these cells to monocytes, but not retinoic acid-dependent differentiation to granulocytes, was accompanied by rapid phosphorylation and nuclear translocation of Smad2 and Smad3. Vitamin D(3) also induced phosphorylation of Smad2/3 and monocytic differentiation; however the effects were indirect, dependent on its ability to induce expression of TGF-beta1. Simultaneous treatment of these cells with TGF-beta1 and all-trans-retinoic acid (ATRA), which leads to almost equal numbers of granulocytes and monocytes, significantly reduced the level of phospho-Smad2/3 and its nuclear accumulation, compared with that in cells treated with TGF-beta1 alone. TGF-beta1 and ATRA activate P42/44 mitogen-activated protein (MAP) kinase with nearly identical kinetics, ruling out its involvement in these effects on Smad phosphorylation. Addition of the inhibitor-of-protein serine/threonine phosphatases, okadaic acid, blocks the ATRA-mediated reduction in TGF-beta-induced phospho-Smad2 and shifts the differentiation toward monocytic end points. In HL-60R mutant cells, which harbor a defective retinoic acid receptor-alpha (RAR-alpha), ATRA is unable to reduce levels of TGF-beta-induced phospho-Smad2/3, coincident with its inability to differentiate these cells along granulocytic pathways. Together, these data suggest a new level of cross-talk between ATRA and TGF-beta, whereby a putative RAR-alpha-dependent phosphatase activity limits the levels of phospho-Smad2/3 induced by TGF-beta, ultimately reducing the levels of nuclear Smad complexes mediating the TGF-beta-dependent differentiation of the cells to monocytic end points.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Granulócitos/citologia , Monócitos/citologia , Transativadores/fisiologia , Fator de Crescimento Transformador beta/farmacologia , Tretinoína/farmacologia , Diferenciação Celular/efeitos dos fármacos , Colecalciferol/farmacologia , Proteínas de Ligação a DNA/metabolismo , Interações Medicamentosas , Granulócitos/efeitos dos fármacos , Células HL-60 , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Monócitos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transdução de Sinais , Proteína Smad2 , Proteína Smad3 , Transativadores/metabolismo , Fator de Crescimento Transformador beta1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA