Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Microbiol ; 23(1): e13271, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979009

RESUMO

The protozoan parasite Plasmodium, causative agent of malaria, invades hepatocytes by invaginating the host cell plasma membrane and forming a parasitophorous vacuole membrane (PVM). Surrounded by this PVM, the parasite undergoes extensive replication. Parasites inside a PVM provoke the Plasmodium-associated autophagy-related (PAAR) response. This is characterised by a long-lasting association of the autophagy marker protein LC3 with the PVM, which is not preceded by phosphatidylinositol 3-phosphate (PI3P)-labelling. Prior to productive invasion, sporozoites transmigrate several cells and here we describe that a proportion of traversing sporozoites become trapped in a transient traversal vacuole, provoking a host cell response that clearly differs from the PAAR response. These trapped sporozoites provoke PI3P-labelling of the surrounding vacuolar membrane immediately after cell entry, followed by transient LC3-labelling and elimination of the parasite by lysosomal acidification. Our data suggest that this PI3P response is not only restricted to sporozoites trapped during transmigration but also affects invaded parasites residing in a compromised vacuole. Thus, host cells can employ a pathway distinct from the previously described PAAR response to efficiently recognise and eliminate Plasmodium parasites.


Assuntos
Autofagia , Hepatócitos/parasitologia , Fosfatos de Fosfatidilinositol/metabolismo , Plasmodium berghei/metabolismo , Plasmodium berghei/parasitologia , Esporozoítos/metabolismo , Vacúolos/parasitologia , Animais , Linhagem Celular , Feminino , Células HeLa , Interações Hospedeiro-Parasita , Humanos , Malária/parasitologia , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Organismos Geneticamente Modificados
2.
Cell Microbiol ; 21(9): e13046, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31099152

RESUMO

The virulence strategy of pathogenic Yersinia spp. involves cell-invasive as well as phagocytosis-preventing tactics to enable efficient colonisation of the host organism. Enteropathogenic yersiniae display an invasive phenotype in early infection stages, which facilitates penetration of the intestinal mucosa. Here we show that invasion of epithelial cells by Yersinia enterocolitica is followed by intracellular survival and multiplication of a subset of ingested bacteria. The replicating bacteria were enclosed in vacuoles with autophagy-related characteristics, showing phagophore formation, xenophagy, and recruitment of cytoplasmic autophagosomes to the bacteria-containing compartments. The subsequent fusion of these vacuoles with lysosomes and concomitant vesicle acidification were actively blocked by Yersinia. This resulted in increased intracellular proliferation and detectable egress of yersiniae from infected cells. Notably, deficiency of the core autophagy machinery component FIP200 impaired the development of autophagic features at Yersinia-containing vacuoles as well as intracellular replication and release of bacteria to the extracellular environment. These results suggest that Y. enterocolitica may take advantage of the macroautophagy pathway in epithelial cells to create an autophagosomal niche that supports intracellular bacterial survival, replication, and, eventually, spread of the bacteria from infected cells.


Assuntos
Autofagossomos/microbiologia , Células Epiteliais/microbiologia , Yersinia enterocolitica/patogenicidade , Animais , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Morte Celular , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Células HeLa , Interações entre Hospedeiro e Microrganismos , Humanos , Lisossomos/metabolismo , Lisossomos/microbiologia , Lisossomos/ultraestrutura , Camundongos , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/metabolismo , Vacúolos/metabolismo , Vacúolos/microbiologia , Vacúolos/ultraestrutura , Yersinia enterocolitica/crescimento & desenvolvimento , Yersinia enterocolitica/metabolismo
3.
PLoS One ; 12(8): e0183797, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28841718

RESUMO

Selective autophagy and related mechanisms can act as variable defense mechanisms against pathogens and can therefore be considered as intracellular immune responses. When in hepatocytes, Plasmodium parasites reside in a parasitophorous vacuole (PV) and the PV membrane (PVM) is the main contact site between host cell and parasite. Early in infection, the PVM is directly labeled with host cell autophagy proteins LC3B and p62 (nucleoporin 62). We investigated the recruitment of different selective autophagy receptors and could show that mainly p62 and NBR1 (neighbour of BRCA1 gene 1) and to a lesser extent NDP52 (nuclear dot protein 52) associate with the PVM. To investigate the recruitment of these receptors to the PVM in Plasmodium-infected cells, we generated LC3B knock out HeLa cells. In these cell lines, autophagosome formation and autophagic flux are not different to those in WT cells. Unexpectedly, p62 and NBR1 recruitment to the PVM was strongly impaired in LC3B-negative host cells, suggesting that LC3B recruits both receptors to the PVM of Plasmodium parasites. We also noticed that LC3B recruited ubiquitin to the PVM. This indicates that, in comparison to classical selective autophagy, in P. berghei-infected cells the order of membrane labeling with autophagy proteins appears to be inverted from canonical ubiquitin-receptor-LC3B recruitment to LC3B-receptor and possibly ubiquitin.


Assuntos
Autofagia , Plasmodium berghei/fisiologia , Animais , Células HeLa , Humanos , Vacúolos/metabolismo
4.
Autophagy ; 11(9): 1561-79, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26208778

RESUMO

Plasmodium parasites are transmitted by Anopheles mosquitoes to the mammalian host and actively infect hepatocytes after passive transport in the bloodstream to the liver. In their target host hepatocyte, parasites reside within a parasitophorous vacuole (PV). In the present study it was shown that the parasitophorous vacuole membrane (PVM) can be targeted by autophagy marker proteins LC3, ubiquitin, and SQSTM1/p62 as well as by lysosomes in a process resembling selective autophagy. The dynamics of autophagy marker proteins in individual Plasmodium berghei-infected hepatocytes were followed by live imaging throughout the entire development of the parasite in the liver. Although the host cell very efficiently recognized the invading parasite in its vacuole, the majority of parasites survived this initial attack. Successful parasite development correlated with the gradual loss of all analyzed autophagy marker proteins and associated lysosomes from the PVM. However, other autophagic events like nonselective canonical autophagy in the host cell continued. This was indicated as LC3, although not labeling the PVM anymore, still localized to autophagosomes in the infected host cell. It appears that growing parasites even benefit from this form of nonselective host cell autophagy as an additional source of nutrients, as in host cells deficient for autophagy, parasite growth was retarded and could partly be rescued by the supply of additional amino acid in the medium. Importantly, mouse infections with P. berghei sporozoites confirmed LC3 dynamics, the positive effect of autophagy activation on parasite growth, and negative effects upon autophagy inhibition.


Assuntos
Citosol/imunologia , Hepatócitos/imunologia , Imageamento Tridimensional , Evasão da Resposta Imune , Imunidade , Malária/imunologia , Parasitos/imunologia , Plasmodium berghei/patogenicidade , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Autofagia , Biomarcadores/metabolismo , Galectinas/metabolismo , Proteínas de Choque Térmico/metabolismo , Células Hep G2 , Hepatócitos/parasitologia , Hepatócitos/ultraestrutura , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Estágios do Ciclo de Vida , Fígado/parasitologia , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Malária/parasitologia , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Parasitos/crescimento & desenvolvimento , Parasitos/patogenicidade , Parasitos/ultraestrutura , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/ultraestrutura , Proteína Sequestossoma-1 , Esporozoítos/fisiologia , Esporozoítos/ultraestrutura , Análise de Sobrevida , Fatores de Tempo , Ubiquitina/metabolismo , Ubiquitinação , Vacúolos/metabolismo , Vacúolos/ultraestrutura , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA