Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2336, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38282019

RESUMO

Conjugated polymers are promising tools to differentiate various types of semiconducting single-walled carbon nanotubes (s-SWCNTs). However, their synthesis is challenging. Insufficient control over molecular weights, and unpredictive/unrepeatable batches hinder possible applications and scale-up. Furthermore, commercial homogeneous catalysts often require inert conditions and are almost impossible to recycle. To overcome these problems, we present a nanocatalyst consisting of magnetic nickel nanowires decorated with highly active palladium nanoparticles. A two-step wet chemical reduction protocol with the assistance of sonochemistry was employed to obtain a heterogeneous catalyst capable of conducting step-growth Suzuki polycondensation of a fluorene-based monomer. Additionally, we enhanced the performance of our catalytic system via controlled microwave irradiation, which significantly shortened the reaction time from 3 d to only 1 h. We studied the influence of the main process parameters on the yield and polymer chain length to gain insight into phenomena occurring in the presence of metallic species under microwave irradiation. Finally, the produced polymers were used to extract specific s-SWCNTs by conjugated polymer extraction to validate their utility.

2.
Sci Total Environ ; 817: 152888, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34998775

RESUMO

Rising concern about emerging and already persisting pollutants in water has urged the scientific community to develop novel remedial techniques. A new group of remediation methods is based on the modification of nanoscale zero-valent iron particles (nZVI), which are well known for treating volatile organic compounds and heavy metals. The properties of nZVI may be further enhanced by modifying their structure or surface using "green" polymers. Herein, nZVI was modified by a ß-cyclodextrin polymer (ß-CDP), which is considered an environmentally safe and inexpensive adsorbent of contaminants. This composite was used for the first time for the degradation of sulfamethoxazole (SMX). Coating by ß-CDP not only enhanced the degradation of SMX (>95%, under 10 min) by the nanoparticles in a wide pH range (3-9) and enabled their efficient reusability (for three cycles) but also made the coated nZVI less toxic to the model bioindicator microalga Raphidocelis subcapitata. Moreover, degradation products of SMX were found to be less toxic to Escherichia coli bacteria and R. subcapitata microalga, contrary to the SMX antibiotic itself, indicating a simple and eco-friendly cleaning process. This research aims to further stimulate and develop novel remedial techniques based on nZVI, and provides a potential application in the degradation of antibiotics in a wide pH range. Moreover, the wealth of available cyclodextrin materials used for surface modification may open a way to discover more efficient and attractive composites for environmental applications.


Assuntos
Ciclodextrinas , Metais Pesados , Poluentes Químicos da Água , Celulose , Ferro/química , Sulfametoxazol/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
3.
J Colloid Interface Sci ; 586: 655-662, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189327

RESUMO

Environmental pollution causes irreversible damage to ecosystems and their structure. Therefore, the development of novel remedial techniques is a must for an effective response to emerging contaminants and those already persisting in the environment. The nanosized zero-valent iron (nZVI) is considered as an important nanostructure for the degradation of toxic compounds. Furthermore, the degradative potential of nZVI may be improved by surface modification. In this work nZVI was functionalized with ß-cyclodextrin (ß-CD), which is considered to be an environmentally-friendly and cheap adsorbent for toxic pollutants. Such a 'green' improvement not only enhances the activity of nZVI but also enables the conversion of 4-nitrophenol to 4-aminophenol, which under standard conditions is persistent and does not significantly react with bare nZVI. This research may help to find a solution to treat persistent organic pollutants (POPs) in aqueous environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA