RESUMO
BACKGROUND: Pubertal growth patterns correlate with future health outcomes. However, the genetic mechanisms mediating growth trajectories remain largely unknown. Here, we modeled longitudinal height growth with Super-Imposition by Translation And Rotation (SITAR) growth curve analysis on ~ 56,000 trans-ancestry samples with repeated height measurements from age 5 years to adulthood. We performed genetic analysis on six phenotypes representing the magnitude, timing, and intensity of the pubertal growth spurt. To investigate the lifelong impact of genetic variants associated with pubertal growth trajectories, we performed genetic correlation analyses and phenome-wide association studies in the Penn Medicine BioBank and the UK Biobank. RESULTS: Large-scale growth modeling enables an unprecedented view of adolescent growth across contemporary and 20th-century pediatric cohorts. We identify 26 genome-wide significant loci and leverage trans-ancestry data to perform fine-mapping. Our data reveals genetic relationships between pediatric height growth and health across the life course, with different growth trajectories correlated with different outcomes. For instance, a faster tempo of pubertal growth correlates with higher bone mineral density, HOMA-IR, fasting insulin, type 2 diabetes, and lung cancer, whereas being taller at early puberty, taller across puberty, and having quicker pubertal growth were associated with higher risk for atrial fibrillation. CONCLUSION: We report novel genetic associations with the tempo of pubertal growth and find that genetic determinants of growth are correlated with reproductive, glycemic, respiratory, and cardiac traits in adulthood. These results aid in identifying specific growth trajectories impacting lifelong health and show that there may not be a single "optimal" pubertal growth pattern.
Assuntos
Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Adulto , Adolescente , Humanos , Criança , Pré-Escolar , Puberdade/genética , Fenótipo , Estatura/genética , Avaliação de Resultados em Cuidados de Saúde , Estudos LongitudinaisRESUMO
The role of the human gut microbiome in colorectal cancer (CRC) is unclear as most studies on the topic are unable to discern correlation from causation. We apply two-sample Mendelian randomization (MR) to estimate the causal relationship between the gut microbiome and CRC. We used summary-level data from independent genome-wide association studies to estimate the causal effect of 14 microbial traits (n = 3890 individuals) on overall CRC (55,168 cases, 65,160 controls) and site-specific CRC risk, conducting several sensitivity analyses to understand the nature of results. Initial MR analysis suggested that a higher abundance of Bifidobacterium and presence of an unclassified group of bacteria within the Bacteroidales order in the gut increased overall and site-specific CRC risk. However, sensitivity analyses suggested that instruments used to estimate relationships were likely complex and involved in many potential horizontal pleiotropic pathways, demonstrating that caution is needed when interpreting MR analyses with gut microbiome exposures. In assessing reverse causality, we did not find strong evidence that CRC causally affected these microbial traits. Whilst our study initially identified potential causal roles for two microbial traits in CRC, importantly, further exploration of these relationships highlighted that these were unlikely to reflect causality.
Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Análise da Randomização Mendeliana/métodos , Estudo de Associação Genômica Ampla , Causalidade , Neoplasias Colorretais/genética , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND: Mechanistic data indicate the benefit of short-chain fatty acids (SCFA) produced by gut microbial fermentation of fiber on colorectal cancer, but direct epidemiologic evidence is limited. A recent study identified SNPs for two SCFA traits (fecal propionate and butyrate-producing microbiome pathway PWY-5022) in Europeans and showed metabolic benefits. METHODS: We conducted a two-sample Mendelian randomization analysis of the genetic instruments for the two SCFA traits (three SNPs for fecal propionate and nine for PWY-5022) in relation to colorectal cancer risk in three large European genetic consortia of 58,131 colorectal cancer cases and 67,347 controls. We estimated the risk of overall colorectal cancer and conducted subgroup analyses by sex, age, and anatomic subsites of colorectal cancer. RESULTS: We did not observe strong evidence for an association of the genetic predictors for fecal propionate levels and the abundance of PWY-5022 with the risk of overall colorectal cancer, colorectal cancer by sex, or early-onset colorectal cancer (diagnosed at <50 years), with no evidence of heterogeneity or pleiotropy. When assessed by tumor subsites, we found weak evidence for an association between PWY-5022 and risk of rectal cancer (OR per 1-SD, 0.95; 95% confidence intervals, 0.91-0.99; P = 0.03) but it did not surpass multiple testing of subgroup analysis. CONCLUSIONS: Genetic instruments for fecal propionate levels and the abundance of PWY-5022 were not associated with colorectal cancer risk. IMPACT: Fecal propionate and PWY-5022 may not have a substantial influence on colorectal cancer risk. Future research is warranted to comprehensively investigate the effects of SCFA-producing bacteria and SCFAs on colorectal cancer risk.
Assuntos
Butiratos , Neoplasias Colorretais , Fezes , Microbioma Gastrointestinal , Propionatos , Humanos , Butiratos/análise , Butiratos/metabolismo , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/genética , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Análise da Randomização Mendeliana , Propionatos/análise , Propionatos/metabolismo , Risco , Europa (Continente)/epidemiologiaRESUMO
Dietary factors are assumed to play an important role in cancer risk, apparent in consensus recommendations for cancer prevention that promote nutritional changes. However, the evidence in this field has been generated predominantly through observational studies, which may result in biased effect estimates because of confounding, exposure misclassification, and reverse causality. With major geographical differences and rapid changes in cancer incidence over time, it is crucial to establish which of the observational associations reflect causality and to identify novel risk factors as these may be modified to prevent the onset of cancer and reduce its progression. Mendelian randomization (MR) uses the special properties of germline genetic variation to strengthen causal inference regarding potentially modifiable exposures and disease risk. MR can be implemented through instrumental variable (IV) analysis and, when robustly performed, is generally less prone to confounding, reverse causation and measurement error than conventional observational methods and has different sources of bias (discussed in detail below). It is increasingly used to facilitate causal inference in epidemiology and provides an opportunity to explore the effects of nutritional exposures on cancer incidence and progression in a cost-effective and timely manner. Here, we introduce the concept of MR and discuss its current application in understanding the impact of nutritional factors (e.g., any measure of diet and nutritional intake, circulating biomarkers, patterns, preference or behaviour) on cancer aetiology and, thus, opportunities for MR to contribute to the development of nutritional recommendations and policies for cancer prevention. We provide applied examples of MR studies examining the role of nutritional factors in cancer to illustrate how this method can be used to help prioritise or deprioritise the evaluation of specific nutritional factors as intervention targets in randomised controlled trials. We describe possible biases when using MR, and methodological developments aimed at investigating and potentially overcoming these biases when present. Lastly, we consider the use of MR in identifying causally relevant nutritional risk factors for various cancers in different regions across the world, given notable geographical differences in some cancers. We also discuss how MR results could be translated into further research and policy. We conclude that findings from MR studies, which corroborate those from other well-conducted studies with different and orthogonal biases, are poised to substantially improve our understanding of nutritional influences on cancer. For such corroboration, there is a requirement for an interdisciplinary and collaborative approach to investigate risk factors for cancer incidence and progression.
Assuntos
Análise da Randomização Mendeliana , Neoplasias , Causalidade , Humanos , Análise da Randomização Mendeliana/métodos , Neoplasias/etiologia , Neoplasias/genética , Estado Nutricional , Fatores de RiscoRESUMO
Mendelian randomization (MR) is increasingly used for generating estimates of the causal impact of exposures on outcomes. Evidence suggests a causal role of excess adipose tissue (adiposity) on many health outcomes. However, this body of work has not been systematically appraised. We systematically reviewed and meta-analysed results from MR studies investigating the association between adiposity and health outcomes prior to the SARS-CoV-2/COVID-19 pandemic (PROSPERO: CRD42018096684). We searched Medline, EMBASE, and bioRxiv up to February 2019 and obtained data on 2,214 MR analyses from 173 included articles. 29 meta-analyses were conducted using data from 34 articles (including 66 MR analyses) and results not able to be meta-analysed were narratively synthesised. Body mass index (BMI) was the predominant exposure used and was primarily associated with an increase in investigated outcomes; the largest effect in the meta-analyses was observed for the association between BMI and polycystic ovary syndrome (estimates reflect odds ratios (OR) per standard deviation change in each adiposity measure): OR = 2.55; 95% confidence interval (CI) = 1.22-5.33. Only colorectal cancer was investigated with two exposures in the meta-analysis: BMI (OR = 1.18; 95% CI = 1.01-1.37) and waist-hip ratio (WHR; OR = 1.48; 95% CI = 1.08-2.03). Broadly, results were consistent across the meta-analyses and narrative synthesis. Consistent with many observational studies, this work highlights the impact of adiposity across a broad spectrum of health outcomes, enabling targeted follow-up analyses. However, missing and incomplete data mean results should be interpreted with caution.
RESUMO
BACKGROUND: Observational data have reported that being overweight or obese, compared to being normal weight, is associated with a lower risk for death - the "obesity paradox". We used Mendelian randomization (MR) to estimate causal effects of body mass index (BMI) on mortality risks in people with coronary heart disease (CHD), type 2 diabetes mellitus (T2DM) or malignancy in whom this paradox has been often reported. METHODS: We studied 457,746 White British UK Biobank participants including three subgroups with T2DM (n = 19,737), CHD (n = 21,925) or cancer (n = 42,612) at baseline and used multivariable-adjusted Cox models and MR approaches to describe relationships between BMI and mortality risk. RESULTS: Observational Cox models showed J-shaped relationships between BMI and mortality risk including within disease subgroups in which the BMI values associated with minimum mortality risk were within overweight/obese ranges (26.5-32.5 kg/m2). In all participants, MR analyses showed a positive linear causal effect of BMI on mortality risk (HR for mortality per unit higher BMI: 1.05; 95% CI: 1.03-1.08), also evident in people with CHD (HR: 1.08; 95% CI: 1.01-1.14). Point estimates for hazard ratios across all BMI values in participants with T2DM and cancer were consistent with overall positive linear effects but confidence intervals included the null. CONCLUSION: These data support the idea that population efforts to promote intentional weight loss towards the normal BMI range would reduce, not enhance, mortality risk in the general population including, importantly, individuals with CHD.
Assuntos
Diabetes Mellitus Tipo 2 , Neoplasias , Índice de Massa Corporal , Diabetes Mellitus Tipo 2/diagnóstico , Humanos , Análise da Randomização Mendeliana , Neoplasias/diagnóstico , Obesidade/diagnóstico , Fatores de RiscoRESUMO
BACKGROUND: High body mass index (BMI) is associated with mortality, but the pervasive problem of confounding and reverse causality in observational studies limits inference about the direction and magnitude of causal effects. We aimed to obtain estimates of the causal association of BMI with all-cause and cause-specific mortality. METHODS AND FINDINGS: In a record-linked, intergenerational prospective study from the general population of Sweden, we used two-sample instrumental variable (IV) analysis with data from 996,898 fathers (282,407 deaths) and 1,013,083 mothers (153,043 deaths) and their sons followed up from January 1, 1961, until December 31, 2004. Sons' BMI was used as the instrument for parents' BMI to compute hazard ratios (HRs) for risk of mortality per standard deviation (SD) higher parents' BMI. Using offspring exposure as an instrument for parents' exposure is unlikely to be affected by reverse causality (an important source of bias in this context) and reduces confounding. IV analyses supported causal associations between higher BMI and greater risk of all-cause mortality (HR [95% confidence interval (CI)] per SD higher fathers' BMI: 1.29 [1.26-1.31] and mothers' BMI: 1.39 [1.35-1.42]) and overall cancer mortality (HR per SD higher fathers' BMI: 1.20 [1.16-1.24] and mothers' BMI: 1.29 [1.24-1.34]), including 9 site-specific cancers in men (bladder, colorectum, gallbladder, kidney, liver, lung, lymphatic system, pancreas, and stomach) and 11 site-specific cancers in women (gallbladder, kidney, liver, lung, lymphatic system, ovaries, pancreas, stomach, uterus, cervix, and endometrium). There was evidence supporting causal associations between higher BMI in mothers and greater risk of mortality from kidney disease (HR: 2.17 [1.68-2.81]) and lower risk of mortality from suicide (HR: 0.77 [0.65-0.90]). In both sexes, there was evidence supporting causal associations between higher BMI and mortality from cardiovascular diseases (CVDs), stroke, diabetes, and respiratory diseases. We were unable to test the association between sons' and mothers' BMIs (as mothers' data were unavailable) or whether the instrument was independent of unmeasured or residual confounding; however, the associations between parents' mortality and sons' BMI were negligibly influenced by adjustment for available confounders. CONCLUSIONS: Consistent with previous large-scale meta-analyses and reviews, results supported the causal role of higher BMI in increasing the risk of several common causes of death, including cancers with increasing global incidence. We also found positive effects of BMI on mortality from respiratory disease, prostate cancer, and lung cancer, which has been inconsistently reported in the literature, suggesting that the causal role of higher BMI in mortality from these diseases may be underestimated. Furthermore, we expect different patterns of bias in the current observational and IV analyses; therefore, the similarities between our findings from both methods increases confidence in the results. These findings support efforts to understand the mechanisms underpinning these effects to inform targeted interventions and develop population-based strategies to reduce rising obesity levels for disease prevention.
Assuntos
Índice de Massa Corporal , Causas de Morte , Mortalidade , Adolescente , Adulto , Filhos Adultos/estatística & dados numéricos , Família , Pai/estatística & dados numéricos , Feminino , Humanos , Masculino , Mães/estatística & dados numéricos , Modelos de Riscos Proporcionais , Fatores de Risco , Suécia/epidemiologia , Adulto JovemRESUMO
BACKGROUND: The 5-year mortality rate for pancreatic cancer is among the highest of all cancers. Greater understanding of underlying causes could inform population-wide intervention strategies for prevention. Summary genetic data from genome-wide association studies (GWAS) have become available for thousands of phenotypes. These data can be exploited in Mendelian randomization (MR) phenome-wide association studies (PheWAS) to efficiently screen the phenome for potential determinants of disease risk. METHODS: We conducted an MR-PheWAS of pancreatic cancer using 486 phenotypes, proxied by 9,124 genetic variants, and summary genetic data from a GWAS of pancreatic cancer (7,110 cancer cases, 7,264 controls). ORs and 95% confidence intervals per 1 SD increase in each phenotype were generated. RESULTS: We found evidence that previously reported risk factors of body mass index (BMI; 1.46; 1.20-1.78) and hip circumference (1.42; 1.21-1.67) were associated with pancreatic cancer. We also found evidence of novel associations with metabolites that have not previously been implicated in pancreatic cancer: ADpSGEGDFXAEGGGVR*, a fibrinogen-cleavage peptide (1.60; 1.31-1.95), and O-sulfo-l-tyrosine (0.58; 0.46-0.74). An inverse association was also observed with lung adenocarcinoma (0.63; 0.54-0.74). CONCLUSIONS: Markers of adiposity (BMI and hip circumference) are potential intervention targets for pancreatic cancer prevention. Further clarification of the causal relevance of the fibrinogen-cleavage peptides and O-sulfo-l-tyrosine in pancreatic cancer etiology is required, as is the basis of our observed association with lung adenocarcinoma. IMPACT: For pancreatic cancer, MR-PheWAS can augment existing risk factor knowledge and generate novel hypotheses to investigate.
Assuntos
Obesidade/genética , Neoplasias Pancreáticas/genética , Adiposidade , Antropometria , Índice de Massa Corporal , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Análise da Randomização Mendeliana/métodos , Obesidade/metabolismo , Obesidade/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fenômica , Fenótipo , Polimorfismo de Nucleotídeo Único , Fatores de RiscoRESUMO
OBJECTIVE: The aim of this study was to obtain estimates of the causal relationship between BMI and mortality. METHODS: Mendelian randomization (MR) with BMI-associated genotypic variation was used to test the causal effect of BMI on all-cause and cause-specific mortality in UK Biobank participants of White British ancestry. RESULTS: MR analyses supported a causal association between higher BMI and greater risk of all-cause mortality (hazard ratio [HR] per 1 kg/m2 : 1.03; 95% CI: 0.99-1.07) and mortality from cardiovascular diseases (HR: 1.10; 95% CI: 1.01-1.19), specifically coronary heart disease (HR: 1.12; 95% CI: 1.00-1.25) and those excluding coronary heart disease/stroke/aortic aneurysm (HR: 1.24; 95% CI: 1.03-1.48), stomach cancer (HR: 1.18; 95% CI: 0.87-1.62), and esophageal cancer (HR: 1.22; 95% CI: 0.98-1.53), and a decreased risk of lung cancer mortality (HR: 0.96; 95% CI: 0.85-1.08). Sex stratification supported the causal role of higher BMI increasing bladder cancer mortality risk (males) but decreasing respiratory disease mortality risk (males). The J-shaped observational association between BMI and mortality was visible with MR analyses, but the BMI at which mortality was minimized was lower and the association was flatter over a larger BMI range. CONCLUSIONS: Results support a causal role of higher BMI in increasing the risk of all-cause mortality and mortality from several specific causes.
Assuntos
Bancos de Espécimes Biológicos/normas , Índice de Massa Corporal , Análise da Randomização Mendeliana/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mortalidade , Reino UnidoRESUMO
Observational epidemiologic studies are prone to confounding, measurement error, and reverse causation, undermining robust causal inference. Mendelian randomization (MR) uses genetic variants to proxy modifiable exposures to generate more reliable estimates of the causal effects of these exposures on diseases and their outcomes. MR has seen widespread adoption within cardio-metabolic epidemiology, but also holds much promise for identifying possible interventions for cancer prevention and treatment. However, some methodologic challenges in the implementation of MR are particularly pertinent when applying this method to cancer etiology and prognosis, including reverse causation arising from disease latency and selection bias in studies of cancer progression. These issues must be carefully considered to ensure appropriate design, analysis, and interpretation of such studies. In this review, we provide an overview of the key principles and assumptions of MR, focusing on applications of this method to the study of cancer etiology and prognosis. We summarize recent studies in the cancer literature that have adopted a MR framework to highlight strengths of this approach compared with conventional epidemiological studies. Finally, limitations of MR and recent methodologic developments to address them are discussed, along with the translational opportunities they present to inform public health and clinical interventions in cancer. Cancer Epidemiol Biomarkers Prev; 27(9); 995-1010. ©2018 AACR.
Assuntos
Análise da Randomização Mendeliana/métodos , Neoplasias/epidemiologia , Neoplasias/genética , Causalidade , Estudos Epidemiológicos , Humanos , PrognósticoRESUMO
Background: Risk factors for pancreatic cancer include a cluster of metabolic conditions such as obesity, hypertension, dyslipidemia, insulin resistance, and type 2 diabetes. Given that these risk factors are correlated, separating out causal from confounded effects is challenging. Mendelian randomization (MR), or the use of genetic instrumental variables, may facilitate the identification of the metabolic drivers of pancreatic cancer. Methods: We identified genetic instruments for obesity, body shape, dyslipidemia, insulin resistance, and type 2 diabetes in order to evaluate their causal role in pancreatic cancer etiology. These instruments were analyzed in relation to risk using a likelihood-based MR approach within a series of 7110 pancreatic cancer patients and 7264 control subjects using genome-wide data from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Potential unknown pleiotropic effects were assessed using a weighted median approach and MR-Egger sensitivity analyses. Results: Results indicated a robust causal association of increasing body mass index (BMI) with pancreatic cancer risk (odds ratio [OR] = 1.34, 95% confidence interval [CI] = 1.09 to 1.65, for each standard deviation increase in BMI [4.6 kg/m2]). There was also evidence that genetically increased fasting insulin levels were causally associated with an increased risk of pancreatic cancer (OR = 1.66, 95% CI = 1.05 to 2.63, per SD [44.4 pmol/L]). Notably, no evidence of a causal relationship was observed for type 2 diabetes, nor for dyslipidemia. Sensitivity analyses did not indicate that pleiotropy was an important source of bias. Conclusions: Our results suggest a causal role of BMI and fasting insulin in pancreatic cancer etiology.
Assuntos
Diabetes Mellitus Tipo 2/complicações , Metabolismo Energético , Obesidade/complicações , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/metabolismo , Índice de Massa Corporal , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Insulina/metabolismo , Resistência à Insulina , Funções Verossimilhança , Masculino , Razão de Chances , Neoplasias Pancreáticas/epidemiologia , Polimorfismo de Nucleotídeo Único , Vigilância da População , Característica Quantitativa Herdável , Fatores de RiscoRESUMO
BACKGROUND: Assessing the relationship between lung cancer and metabolic conditions is challenging because of the confounding effect of tobacco. Mendelian randomization (MR), or the use of genetic instrumental variables to assess causality, may help to identify the metabolic drivers of lung cancer. METHODS AND FINDINGS: We identified genetic instruments for potential metabolic risk factors and evaluated these in relation to risk using 29,266 lung cancer cases (including 11,273 adenocarcinomas, 7,426 squamous cell and 2,664 small cell cases) and 56,450 controls. The MR risk analysis suggested a causal effect of body mass index (BMI) on lung cancer risk for two of the three major histological subtypes, with evidence of a risk increase for squamous cell carcinoma (odds ratio (OR) [95% confidence interval (CI)] = 1.20 [1.01-1.43] and for small cell lung cancer (OR [95%CI] = 1.52 [1.15-2.00]) for each standard deviation (SD) increase in BMI [4.6 kg/m2]), but not for adenocarcinoma (OR [95%CI] = 0.93 [0.79-1.08]) (Pheterogeneity = 4.3x10-3). Additional analysis using a genetic instrument for BMI showed that each SD increase in BMI increased cigarette consumption by 1.27 cigarettes per day (P = 2.1x10-3), providing novel evidence that a genetic susceptibility to obesity influences smoking patterns. There was also evidence that low-density lipoprotein cholesterol was inversely associated with lung cancer overall risk (OR [95%CI] = 0.90 [0.84-0.97] per SD of 38 mg/dl), while fasting insulin was positively associated (OR [95%CI] = 1.63 [1.25-2.13] per SD of 44.4 pmol/l). Sensitivity analyses including a weighted-median approach and MR-Egger test did not detect other pleiotropic effects biasing the main results. CONCLUSIONS: Our results are consistent with a causal role of fasting insulin and low-density lipoprotein cholesterol in lung cancer etiology, as well as for BMI in squamous cell and small cell carcinoma. The latter relation may be mediated by a previously unrecognized effect of obesity on smoking behavior.
Assuntos
Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Análise da Randomização Mendeliana , Obesidade/complicações , Índice de Massa Corporal , Jejum , Humanos , Insulina/sangue , Resistência à Insulina , Funções Verossimilhança , Lipídeos/sangue , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/complicações , Obesidade/sangue , Fenótipo , Polimorfismo de Nucleotídeo Único , Fatores de RiscoRESUMO
Mendelian randomization (MR) is an increasingly important tool for appraising causality in observational epidemiology. The technique exploits the principle that genotypes are not generally susceptible to reverse causation bias and confounding, reflecting their fixed nature and Mendel's first and second laws of inheritance. The approach is, however, subject to important limitations and assumptions that, if unaddressed or compounded by poor study design, can lead to erroneous conclusions. Nevertheless, the advent of 2-sample approaches (in which exposure and outcome are measured in separate samples) and the increasing availability of open-access data from large consortia of genome-wide association studies and population biobanks mean that the approach is likely to become routine practice in evidence synthesis and causal inference research. In this article we provide an overview of the design, analysis, and interpretation of MR studies, with a special emphasis on assumptions and limitations. We also consider different analytic strategies for strengthening causal inference. Although impossible to prove causality with any single approach, MR is a highly cost-effective strategy for prioritizing intervention targets for disease prevention and for strengthening the evidence base for public health policy.
Assuntos
Análise da Randomização Mendeliana/métodos , Projetos de Pesquisa , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/genética , Análise Custo-Benefício , Bases de Dados Genéticas , Estudos de Associação Genética , Genótipo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Polimorfismo de Nucleotídeo Único , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Reprodutibilidade dos Testes , Fatores de RiscoRESUMO
Given that observational associations may be inaccurate, we used offspring blood pressure (BP) to provide alternative estimates of the associations between own BP and mortality. Observational associations between BP and mortality, estimated as hazard ratios (HRs) from Cox regression, were compared to HRs obtained using offspring BP as an instrumental variable (IV) for own BP (N = 32,227 mother-offspring and 27,535 father-offspring pairs). Observationally, there were positive associations between own BP and mortality from all-causes, cardiovascular disease (CVD), coronary heart disease (CHD), stroke and diabetes. Point estimates of the associations between BP and mortality from all-causes, CVD and CHD were amplified in magnitude when using offspring BP as an IV. For example, the HR for all-cause mortality per standard deviation (SD) increase in own systolic BP (SBP) obtained in conventional observational analyses increased from 1.10 (95% CI: 1.09-1.12; P < 0.0001) to 1.31 (95% CI: 1.19-1.43; P < 0.0001). Additionally, SBP was positively associated with diabetes and cancer mortality (HRs: 2.00; 95% CI: 1.12-3.35; P = 0.02 and 1.20; 95% CI: 1.02-1.42; P = 0.03, respectively), and diastolic BP (DBP) with stroke mortality (HR: 1.30; 95% CI: 1.02-1.66; P = 0.03). Results support positive associations between BP and mortality from all-causes, CVD, and CHD, SBP on cancer mortality, and DBP on stroke mortality.
Assuntos
Pressão Sanguínea/fisiologia , Hipertensão/mortalidade , Hipertensão/fisiopatologia , Adulto , Feminino , Humanos , Masculino , Modelos de Riscos Proporcionais , Fatores de Risco , Acidente Vascular Cerebral/mortalidade , Acidente Vascular Cerebral/fisiopatologiaRESUMO
BACKGROUND: Observational studies showed that circulating L-ascorbic acid (vitamin C) is inversely associated with cardiometabolic traits. However, these studies were susceptible to confounding and reverse causation. OBJECTIVES: We assessed the relation between L-ascorbic acid and 10 cardiometabolic traits by using a single nucleotide polymorphism in the solute carrier family 23 member 1 (SLC23A1) gene (rs33972313) associated with circulating L-ascorbic acid concentrations. The observed association between rs33972313 and cardiometabolic outcomes was compared with that expected given the rs33972313-L-ascorbic acid and L-ascorbic acid-outcome associations. DESIGN: A meta-analysis was performed in the following 5 independent studies: the British Women's Heart and Health Study (n = 1833), the MIDSPAN study (n = 1138), the Ten Towns study (n = 1324), the British Regional Heart Study (n = 2521), and the European Prospective Investigation into Cancer (n = 3737). RESULTS: With the use of a meta-analysis of observational estimates, inverse associations were shown between L-ascorbic acid and systolic blood pressure, triglycerides, and the waist-hip ratio [the strongest of which was the waist-hip ratio (-0.13-SD change; 95% CI: -0.20-, -0.07-SD change; P = 0.0001) per SD increase in L-ascorbic acid], and a positive association was shown with high-density lipoprotein (HDL) cholesterol. The variation at rs33972313 was associated with a 0.18-SD (95% CI: 0.10-, 0.25-SD; P = 3.34 × 10â»6) increase in L-ascorbic acid per effect allele. There was no evidence of a relation between the variation at rs33972313 and any cardiometabolic outcome. Although observed estimates were not statistically different from expected associations between rs33972313 and cardiometabolic outcomes, estimates for low-density lipoprotein cholesterol, HDL cholesterol, triglycerides, glucose, and body mass index were in the opposite direction to those expected. CONCLUSIONS: The nature of the genetic association exploited in this study led to limited statistical application, but despite this, when all cardiometabolic traits were assessed, there was no evidence of any trend supporting a protective role of L-ascorbic acid. In the context of existing work, these results add to the suggestion that observational relations between L-ascorbic acid and cardiometabolic health may be attributable to confounding and reverse causation.