Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Infect Genet Evol ; 92: 104848, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33823306

RESUMO

In spite of a decrease in malaria cases, the threat of malaria due to Plasmodium falciparum still prevails. The sequencing of Plasmodium falciparum reveals that approximately 60% of the Plasmodium genes code for hypothetical/putative proteins. Here we report an in silico characterization and localization of one such protein. This was encoded by one of the hub genes, in a weighted gene co-expression based systems network, from in-vivo samples of patients suffering from uncomplicated malaria or complicated malaria disease like jaundice and jaundice with renal failure. Interestingly, the protein PF3D7_0406000 (PFD0300w) is classified as a conserved protein of unknown function and shows no identity with any protein from the human host. The transcriptomic data shows up-regulation of transcripts in cases of malaria induced disease complications. PFD0300w peptide antibody based immunolocalization studies using a, gametocyte producing P. falciparum strain RKL-9, shows presence of the protein in the cytoplasm of both asexual and sexual stage parasites.


Assuntos
Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Animais , Anticorpos/genética , Humanos , Malária Falciparum/parasitologia , Camundongos , Peptídeos/genética , Transcriptoma/genética , Regulação para Cima/genética
2.
J Vector Borne Dis ; 56(3): 189-199, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32655067

RESUMO

BACKGROUND & OBJECTIVES: Malaria has remained a global health problem despite the effective control and treatment measures. In the backdrop of drug resistance, developing novel hybrid molecules targeting the sexual stages (gametocytes) of the human malaria parasite Plasmodium falciparum is of great significance. Recently, chalcone- based polyphenols have generated a great interest in the malaria research community worldwide due to their ease of synthesis and significant biological activity. The primary objective of this study was to investigate the interaction of a newly synthesized quinoline-appended chalcone derivative (ADMQ) with gametocyte specific proteins, Pfg 27 and Pfs 25 and explore its in vitro gametocytocidal potential. METHODS: The characterization of ligand-protein interactions at the atomistic level was done by a simulation strategy that combines molecular docking and molecular dynamics (MD) simulation in a coherent workflow. The X-ray crystal structure of Pfg 27 was retrieved from protein data bank and Pfs 25 was built using the Iterative Threading ASSembly Refinement (I-TASSER) server. The detailed interaction of both ADMQ and a known gametocytocidal agent, methylene blue (MB) (used as a positive control) with gametocyte proteins Pfg 27 and Pfs 25 was studied with a 50 ns explicit MD simulation. The ligand binding pose in terms of glide score, molecular mechanics-generalized born surface area (MM-GBSA) binding energies, protein-ligand root-mean-square-deviation (RMSD) and secondary structure elements (SSE) changes were analyzed accordingly. The direct effect of ADMQ on structural integrity of P. falciparum gametocytes was also examined using in vitro microscopy. RESULTS: The analogous Glide score and MM-GBSA free energy of binding indicated stable interactions for both ADMQ and MB harboured in the active site of targeted gametocyte proteins, Pfg 27 and Pfs 25, separately. Explicit MD simulation by Desmond software package indicated similar distinguishable conformational changes in the active site of target polypeptide chain due to the specific accommodation of ADMQ molecule. The simulation also manifested comparable mechanistic profile in terms of protein-ligand RMSD and changes in secondary structure elements (SSE). Further, ADMQ treatment was found to adversely affect the structural integrity of gametocytes, which resulted in appearance of vesicles protruding from the gametocytes. INTERPRETATION & CONCLUSION: The consolidated in silico molecular modeling and in vitro study described herein may give an insight into the interaction patterns of quinoline-chalcone hybrids with critical gametocyte proteins in the mosquito. This study will possibly pave the way for further exploration of similar heterocyclic quinoline-chalcone hybrids to open up new avenues in drug candidate development against P. falciparum gametocytes.


Assuntos
Antimaláricos/farmacologia , Chalconas/farmacologia , Simulação de Acoplamento Molecular , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/farmacologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Ligantes , Ligação Proteica , Proteínas de Protozoários/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA