Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nucleic Acids Res ; 52(D1): D1227-D1235, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37953380

RESUMO

The Drug-Gene Interaction Database (DGIdb, https://dgidb.org) is a publicly accessible resource that aggregates genes or gene products, drugs and drug-gene interaction records to drive hypothesis generation and discovery for clinicians and researchers. DGIdb 5.0 is the latest release and includes substantial architectural and functional updates to support integration into clinical and drug discovery pipelines. The DGIdb service architecture has been split into separate client and server applications, enabling consistent data access for users of both the application programming interface (API) and web interface. The new interface was developed in ReactJS, and includes dynamic visualizations and consistency in the display of user interface elements. A GraphQL API has been added to support customizable queries for all drugs, genes, annotations and associated data. Updated documentation provides users with example queries and detailed usage instructions for these new features. In addition, six sources have been added and many existing sources have been updated. Newly added sources include ChemIDplus, HemOnc, NCIt (National Cancer Institute Thesaurus), Drugs@FDA, HGNC (HUGO Gene Nomenclature Committee) and RxNorm. These new sources have been incorporated into DGIdb to provide additional records and enhance annotations of regulatory approval status for therapeutics. Methods for grouping drugs and genes have been expanded upon and developed as independent modular normalizers during import. The updates to these sources and grouping methods have resulted in an improvement in FAIR (findability, accessibility, interoperability and reusability) data representation in DGIdb.


Assuntos
Medicina de Precisão , Humanos , Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas , Internet , Interface Usuário-Computador , Vocabulário Controlado
2.
JAMIA Open ; 6(4): ooad093, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37954974

RESUMO

Objective: The diversity of nomenclature and naming strategies makes therapeutic terminology difficult to manage and harmonize. As the number and complexity of available therapeutic ontologies continues to increase, the need for harmonized cross-resource mappings is becoming increasingly apparent. This study creates harmonized concept mappings that enable the linking together of like-concepts despite source-dependent differences in data structure or semantic representation. Materials and Methods: For this study, we created Thera-Py, a Python package and web API that constructs searchable concepts for drugs and therapeutic terminologies using 9 public resources and thesauri. By using a directed graph approach, Thera-Py captures commonly used aliases, trade names, annotations, and associations for any given therapeutic and combines them under a single concept record. Results: We highlight the creation of 16 069 unique merged therapeutic concepts from 9 distinct sources using Thera-Py and observe an increase in overlap of therapeutic concepts in 2 or more knowledge bases after harmonization using Thera-Py (9.8%-41.8%). Conclusion: We observe that Thera-Py tends to normalize therapeutic concepts to their underlying active ingredients (excluding nondrug therapeutics, eg, radiation therapy, biologics), and unifies all available descriptors regardless of ontological origin.

3.
PLoS One ; 18(5): e0285433, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37196000

RESUMO

The Global Alliance for Genomics and Health (GA4GH) is a standards-setting organization that is developing a suite of coordinated standards for genomics. The GA4GH Phenopacket Schema is a standard for sharing disease and phenotype information that characterizes an individual person or biosample. The Phenopacket Schema is flexible and can represent clinical data for any kind of human disease including rare disease, complex disease, and cancer. It also allows consortia or databases to apply additional constraints to ensure uniform data collection for specific goals. We present phenopacket-tools, an open-source Java library and command-line application for construction, conversion, and validation of phenopackets. Phenopacket-tools simplifies construction of phenopackets by providing concise builders, programmatic shortcuts, and predefined building blocks (ontology classes) for concepts such as anatomical organs, age of onset, biospecimen type, and clinical modifiers. Phenopacket-tools can be used to validate the syntax and semantics of phenopackets as well as to assess adherence to additional user-defined requirements. The documentation includes examples showing how to use the Java library and the command-line tool to create and validate phenopackets. We demonstrate how to create, convert, and validate phenopackets using the library or the command-line application. Source code, API documentation, comprehensive user guide and a tutorial can be found at https://github.com/phenopackets/phenopacket-tools. The library can be installed from the public Maven Central artifact repository and the application is available as a standalone archive. The phenopacket-tools library helps developers implement and standardize the collection and exchange of phenotypic and other clinical data for use in phenotype-driven genomic diagnostics, translational research, and precision medicine applications.


Assuntos
Neoplasias , Software , Humanos , Genômica , Bases de Dados Factuais , Biblioteca Gênica
4.
Adv Genet (Hoboken) ; 4(1): 2200016, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36910590

RESUMO

The Global Alliance for Genomics and Health (GA4GH) is developing a suite of coordinated standards for genomics for healthcare. The Phenopacket is a new GA4GH standard for sharing disease and phenotype information that characterizes an individual person, linking that individual to detailed phenotypic descriptions, genetic information, diagnoses, and treatments. A detailed example is presented that illustrates how to use the schema to represent the clinical course of a patient with retinoblastoma, including demographic information, the clinical diagnosis, phenotypic features and clinical measurements, an examination of the extirpated tumor, therapies, and the results of genomic analysis. The Phenopacket Schema, together with other GA4GH data and technical standards, will enable data exchange and provide a foundation for the computational analysis of disease and phenotype information to improve our ability to diagnose and conduct research on all types of disorders, including cancer and rare diseases.

6.
Br J Cancer ; 127(8): 1540-1549, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35871236

RESUMO

BACKGROUND: Cholangiocarcinoma (CCA) is a primary malignancy of the biliary tract with a dismal prognosis. Recently, several actionable genetic aberrations were identified with significant enrichment in intrahepatic CCA, including FGFR2 gene fusions with a prevalence of 10-15%. Recent clinical data demonstrate that these fusions are druggable in a second-line setting in advanced/metastatic disease and the efficacy in earlier lines of therapy is being evaluated in ongoing clinical trials. This scenario warrants standardised molecular profiling of these tumours. METHODS: A detailed analysis of the original genetic data from the FIGHT-202 trial, on which the approval of Pemigatinib was based, was conducted. RESULTS: Comparing different detection approaches and displaying representative cases, we described the genetic landscape and architecture of FGFR2 fusions in iCCA and show biological and technical aspects to be considered for their detection. We elaborated parameters, including a suggestion for annotation, that should be stated in a molecular diagnostic FGFR2 report to allow a complete understanding of the analysis performed and the information provided. CONCLUSION: This study provides a detailed presentation and dissection of the technical and biological aspects regarding FGFR2 fusion detection, which aims to support molecular pathologists, pathologists and clinicians in diagnostics, reporting of the results and decision-making.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias dos Ductos Biliares/tratamento farmacológico , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/tratamento farmacológico , Genômica , Humanos , Técnicas de Diagnóstico Molecular , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética
8.
Genet Med ; 24(5): 986-998, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35101336

RESUMO

PURPOSE: Several professional societies have published guidelines for the clinical interpretation of somatic variants, which specifically address diagnostic, prognostic, and therapeutic implications. Although these guidelines for the clinical interpretation of variants include data types that may be used to determine the oncogenicity of a variant (eg, population frequency, functional, and in silico data or somatic frequency), they do not provide a direct, systematic, and comprehensive set of standards and rules to classify the oncogenicity of a somatic variant. This insufficient guidance leads to inconsistent classification of rare somatic variants in cancer, generates variability in their clinical interpretation, and, importantly, affects patient care. Therefore, it is essential to address this unmet need. METHODS: Clinical Genome Resource (ClinGen) Somatic Cancer Clinical Domain Working Group and ClinGen Germline/Somatic Variant Subcommittee, the Cancer Genomics Consortium, and the Variant Interpretation for Cancer Consortium used a consensus approach to develop a standard operating procedure (SOP) for the classification of oncogenicity of somatic variants. RESULTS: This comprehensive SOP has been developed to improve consistency in somatic variant classification and has been validated on 94 somatic variants in 10 common cancer-related genes. CONCLUSION: The comprehensive SOP is now available for classification of oncogenicity of somatic variants.


Assuntos
Genoma Humano , Neoplasias , Testes Genéticos/métodos , Variação Genética/genética , Genoma Humano/genética , Genômica/métodos , Humanos , Neoplasias/genética , Virulência
9.
Semin Cancer Biol ; 84: 129-143, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33631297

RESUMO

The complexity of diagnostic (surgical) pathology has increased substantially over the last decades with respect to histomorphological and molecular profiling. Pathology has steadily expanded its role in tumor diagnostics and beyond from disease entity identification via prognosis estimation to precision therapy prediction. It is therefore not surprising that pathology is among the disciplines in medicine with high expectations in the application of artificial intelligence (AI) or machine learning approaches given their capabilities to analyze complex data in a quantitative and standardized manner to further enhance scope and precision of diagnostics. While an obvious application is the analysis of histological images, recent applications for the analysis of molecular profiling data from different sources and clinical data support the notion that AI will enhance both histopathology and molecular pathology in the future. At the same time, current literature should not be misunderstood in a way that pathologists will likely be replaced by AI applications in the foreseeable future. Although AI will transform pathology in the coming years, recent studies reporting AI algorithms to diagnose cancer or predict certain molecular properties deal with relatively simple diagnostic problems that fall short of the diagnostic complexity pathologists face in clinical routine. Here, we review the pertinent literature of AI methods and their applications to pathology, and put the current achievements and what can be expected in the future in the context of the requirements for research and routine diagnostics.


Assuntos
Inteligência Artificial , Neoplasias , Humanos , Aprendizado de Máquina , Neoplasias/diagnóstico , Neoplasias/genética , Prognóstico
11.
BMC Genomics ; 22(1): 872, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863095

RESUMO

BACKGROUND: Pediatric cancers typically have a distinct genomic landscape when compared to adult cancers and frequently carry somatic gene fusion events that alter gene expression and drive tumorigenesis. Sensitive and specific detection of gene fusions through the analysis of next-generation-based RNA sequencing (RNA-Seq) data is computationally challenging and may be confounded by low tumor cellularity or underlying genomic complexity. Furthermore, numerous computational tools are available to identify fusions from supporting RNA-Seq reads, yet each algorithm demonstrates unique variability in sensitivity and precision, and no clearly superior approach currently exists. To overcome these challenges, we have developed an ensemble fusion calling approach to increase the accuracy of identifying fusions. RESULTS: Our Ensemble Fusion (EnFusion) approach utilizes seven fusion calling algorithms: Arriba, CICERO, FusionMap, FusionCatcher, JAFFA, MapSplice, and STAR-Fusion, which are packaged as a fully automated pipeline using Docker and Amazon Web Services (AWS) serverless technology. This method uses paired end RNA-Seq sequence reads as input, and the output from each algorithm is examined to identify fusions detected by a consensus of at least three algorithms. These consensus fusion results are filtered by comparison to an internal database to remove likely artifactual fusions occurring at high frequencies in our internal cohort, while a "known fusion list" prevents failure to report known pathogenic events. We have employed the EnFusion pipeline on RNA-Seq data from 229 patients with pediatric cancer or blood disorders studied under an IRB-approved protocol. The samples consist of 138 central nervous system tumors, 73 solid tumors, and 18 hematologic malignancies or disorders. The combination of an ensemble fusion-calling pipeline and a knowledge-based filtering strategy identified 67 clinically relevant fusions among our cohort (diagnostic yield of 29.3%), including RBPMS-MET, BCAN-NTRK1, and TRIM22-BRAF fusions. Following clinical confirmation and reporting in the patient's medical record, both known and novel fusions provided medically meaningful information. CONCLUSIONS: The EnFusion pipeline offers a streamlined approach to discover fusions in cancer, at higher levels of sensitivity and accuracy than single algorithm methods. Furthermore, this method accurately identifies driver fusions in pediatric cancer, providing clinical impact by contributing evidence to diagnosis and, when appropriate, indicating targeted therapies.


Assuntos
Genoma , Neoplasias , Criança , Genômica , Humanos , Neoplasias/genética , Análise de Sequência de DNA , Análise de Sequência de RNA
13.
JCO Clin Cancer Inform ; 4: 602-613, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32644817

RESUMO

PURPOSE: The cancer research community is constantly evolving to better understand tumor biology, disease etiology, risk stratification, and pathways to novel treatments. Yet the clinical cancer genomics field has been hindered by redundant efforts to meaningfully collect and interpret disparate data types from multiple high-throughput modalities and integrate into clinical care processes. Bespoke data models, knowledgebases, and one-off customized resources for data analysis often lack adequate governance and quality control needed for these resources to be clinical grade. Many informatics efforts focused on genomic interpretation resources for neoplasms are underway to support data collection, deposition, curation, harmonization, integration, and analytics to support case review and treatment planning. METHODS: In this review, we evaluate and summarize the landscape of available tools, resources, and evidence used in the evaluation of somatic and germline tumor variants within the context of molecular tumor boards. RESULTS: Molecular tumor boards (MTBs) are collaborative efforts of multidisciplinary cancer experts equipped with genomic interpretation resources to aid in the delivery of accurate and timely clinical interpretations of complex genomic results for each patient, within an institution or hospital network. Virtual MTBs (VMTBs) provide an online forum for collaborative governance, provenance, and information sharing between experts outside a given hospital network with the potential to enhance MTB discussions. Knowledge sharing in VMTBs and communication with guideline-developing organizations can lead to progress evidenced by data harmonization across resources, crowd-sourced and expert-curated genomic assertions, and a more informed and explainable usage of artificial intelligence. CONCLUSION: Advances in cancer genomics interpretation aid in better patient and disease classification, more streamlined identification of relevant literature, and a more thorough review of available treatments and predicted patient outcomes.


Assuntos
Inteligência Artificial , Neoplasias , Genômica , Humanos , Disseminação de Informação , Bases de Conhecimento , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia
14.
Nat Genet ; 52(4): 448-457, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32246132

RESUMO

Precision oncology relies on accurate discovery and interpretation of genomic variants, enabling individualized diagnosis, prognosis and therapy selection. We found that six prominent somatic cancer variant knowledgebases were highly disparate in content, structure and supporting primary literature, impeding consensus when evaluating variants and their relevance in a clinical setting. We developed a framework for harmonizing variant interpretations to produce a meta-knowledgebase of 12,856 aggregate interpretations. We demonstrated large gains in overlap between resources across variants, diseases and drugs as a result of this harmonization. We subsequently demonstrated improved matching between a patient cohort and harmonized interpretations of potential clinical significance, observing an increase from an average of 33% per individual knowledgebase to 57% in aggregate. Our analyses illuminate the need for open, interoperable sharing of variant interpretation data. We also provide a freely available web interface (search.cancervariants.org) for exploring the harmonized interpretations from these six knowledgebases.


Assuntos
Variação Genética/genética , Neoplasias/genética , Bases de Dados Genéticas , Diploide , Genômica/métodos , Humanos , Bases de Conhecimento , Medicina de Precisão/métodos
15.
JCO Clin Cancer Inform ; 4: 245-253, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32191543

RESUMO

PURPOSE: Precision oncology depends on the matching of tumor variants to relevant knowledge describing the clinical significance of those variants. We recently developed the Clinical Interpretations for Variants in Cancer (CIViC; civicdb.org) crowd-sourced, expert-moderated, and open-access knowledgebase. CIViC provides a structured framework for evaluating genomic variants of various types (eg, fusions, single-nucleotide variants) for their therapeutic, prognostic, predisposing, diagnostic, or functional utility. CIViC has a documented application programming interface for accessing CIViC records: assertions, evidence, variants, and genes. Third-party tools that analyze or access the contents of this knowledgebase programmatically must leverage this application programming interface, often reimplementing redundant functionality in the pursuit of common analysis tasks that are beyond the scope of the CIViC Web application. METHODS: To address this limitation, we developed CIViCpy (civicpy.org), a software development kit for extracting and analyzing the contents of the CIViC knowledgebase. CIViCpy enables users to query CIViC content as dynamic objects in Python. We assess the viability of CIViCpy as a tool for advancing individualized patient care by using it to systematically match CIViC evidence to observed variants in patient cancer samples. RESULTS: We used CIViCpy to evaluate variants from 59,437 sequenced tumors of the American Association for Cancer Research Project GENIE data set. We demonstrate that CIViCpy enables annotation of > 1,200 variants per second, resulting in precise variant matches to CIViC level A (professional guideline) or B (clinical trial) evidence for 38.6% of tumors. CONCLUSION: The clinical interpretation of genomic variants in cancers requires high-throughput tools for interoperability and analysis of variant interpretation knowledge. These needs are met by CIViCpy, a software development kit for downstream applications and rapid analysis. CIViCpy is fully documented, open-source, and available free online.


Assuntos
Mineração de Dados/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Proteínas de Neoplasias/genética , Neoplasias/genética , Software , Bases de Dados Genéticas/normas , Humanos , Bases de Conhecimento , Neoplasias/diagnóstico , Neoplasias/terapia , Medicina de Precisão/normas , Interface Usuário-Computador
16.
Genome Med ; 11(1): 76, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31779674

RESUMO

Manually curated variant knowledgebases and their associated knowledge models are serving an increasingly important role in distributing and interpreting variants in cancer. These knowledgebases vary in their level of public accessibility, and the complexity of the models used to capture clinical knowledge. CIViC (Clinical Interpretation of Variants in Cancer - www.civicdb.org) is a fully open, free-to-use cancer variant interpretation knowledgebase that incorporates highly detailed curation of evidence obtained from peer-reviewed publications and meeting abstracts, and currently holds over 6300 Evidence Items for over 2300 variants derived from over 400 genes. CIViC has seen increased adoption by, and also undertaken collaboration with, a wide range of users and organizations involved in research. To enhance CIViC's clinical value, regular submission to the ClinVar database and pursuit of other regulatory approvals is necessary. For this reason, a formal peer reviewed curation guideline and discussion of the underlying principles of curation is needed. We present here the CIViC knowledge model, standard operating procedures (SOP) for variant curation, and detailed examples to support community-driven curation of cancer variants.


Assuntos
Competência Clínica , Suscetibilidade a Doenças , Bases de Conhecimento , Neoplasias/diagnóstico , Neoplasias/etiologia , Padrões de Prática Médica , Gerenciamento Clínico , Humanos , Modelos Teóricos , Neoplasias/terapia
17.
Genet Med ; 21(4): 972-981, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287923

RESUMO

PURPOSE: Following automated variant calling, manual review of aligned read sequences is required to identify a high-quality list of somatic variants. Despite widespread use in analyzing sequence data, methods to standardize manual review have not been described, resulting in high inter- and intralab variability. METHODS: This manual review standard operating procedure (SOP) consists of methods to annotate variants with four different calls and 19 tags. The calls indicate a reviewer's confidence in each variant and the tags indicate commonly observed sequencing patterns and artifacts that inform the manual review call. Four individuals were asked to classify variants prior to, and after, reading the SOP and accuracy was assessed by comparing reviewer calls with orthogonal validation sequencing. RESULTS: After reading the SOP, average accuracy in somatic variant identification increased by 16.7% (p value = 0.0298) and average interreviewer agreement increased by 12.7% (p value < 0.001). Manual review conducted after reading the SOP did not significantly increase reviewer time. CONCLUSION: This SOP supports and enhances manual somatic variant detection by improving reviewer accuracy while reducing the interreviewer variability for variant calling and annotation.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/normas , Mutação/genética , Neoplasias/genética , Software , Algoritmos , Humanos , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único/genética , Alinhamento de Sequência
18.
Nat Genet ; 50(12): 1735-1743, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30397337

RESUMO

Cancer genomic analysis requires accurate identification of somatic variants in sequencing data. Manual review to refine somatic variant calls is required as a final step after automated processing. However, manual variant refinement is time-consuming, costly, poorly standardized, and non-reproducible. Here, we systematized and standardized somatic variant refinement using a machine learning approach. The final model incorporates 41,000 variants from 440 sequencing cases. This model accurately recapitulated manual refinement labels for three independent testing sets (13,579 variants) and accurately predicted somatic variants confirmed by orthogonal validation sequencing data (212,158 variants). The model improves on manual somatic refinement by reducing bias on calls otherwise subject to high inter-reviewer variability.


Assuntos
Análise Mutacional de DNA/métodos , Aprendizado Profundo , Processamento Eletrônico de Dados/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias/genética , Algoritmos , Simulação por Computador , Análise Mutacional de DNA/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Humanos , Mutação , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Análise de Sequência de DNA/instrumentação , Análise de Sequência de DNA/métodos , Software
19.
Hum Mutat ; 39(11): 1721-1732, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30311370

RESUMO

Harmonization of cancer variant representation, efficient communication, and free distribution of clinical variant-associated knowledge are central problems that arise with increased usage of clinical next-generation sequencing. The Clinical Genome Resource (ClinGen) Somatic Working Group (WG) developed a minimal variant level data (MVLD) representation of cancer variants, and has an ongoing collaboration with Clinical Interpretations of Variants in Cancer (CIViC), an open-source platform supporting crowdsourced and expert-moderated cancer variant curation. Harmonization between MVLD and CIViC variant formats was assessed by formal field-by-field analysis. Adjustments to the CIViC format were made to harmonize with MVLD and support ClinGen Somatic WG curation activities, including four new features in CIViC: (1) introduction of an assertions feature for clinical variant assessment following the Association of Molecular Pathologists (AMP) guidelines, (2) group-level curation tracking for organizations, enabling member transparency, and curation effort summaries, (3) introduction of ClinGen Allele Registry IDs to CIViC, and (4) mapping of CIViC assertions into ClinVar submission with automated submissions. A generalizable workflow utilizing MVLD and new CIViC features is outlined for use by ClinGen Somatic WG task teams for curation and submission to ClinVar, and provides a model for promoting harmonization of cancer variant representation and efficient distribution of this information.


Assuntos
Genoma Humano/genética , Neoplasias/genética , Bases de Dados Genéticas , Testes Genéticos , Variação Genética/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Software
20.
Nat Commun ; 9(1): 3787, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30224629

RESUMO

Nearly all patients with small cell lung cancer (SCLC) eventually relapse with chemoresistant disease. The molecular mechanisms driving chemoresistance in SCLC remain un-characterized. Here, we describe whole-exome sequencing of paired SCLC tumor samples procured at diagnosis and relapse from 12 patients, and unpaired relapse samples from 18 additional patients. Multiple somatic copy number alterations, including gains in ABCC1 and deletions in MYCL, MSH2, and MSH6, are identifiable in relapsed samples. Relapse samples also exhibit recurrent mutations and loss of heterozygosity in regulators of WNT signaling, including CHD8 and APC. Analysis of RNA-sequencing data shows enrichment for an ASCL1-low expression subtype and WNT activation in relapse samples. Activation of WNT signaling in chemosensitive human SCLC cell lines through APC knockdown induces chemoresistance. Additionally, in vitro-derived chemoresistant cell lines demonstrate increased WNT activity. Overall, our results suggest WNT signaling activation as a mechanism of chemoresistance in relapsed SCLC.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/genética , Carcinoma de Pequenas Células do Pulmão/genética , Via de Sinalização Wnt/genética , Proteína da Polipose Adenomatosa do Colo/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Caderinas/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Perda de Heterozigosidade , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Mutação , Recidiva Local de Neoplasia , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/patologia , Sequenciamento do Exoma , Via de Sinalização Wnt/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA