Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Morphol ; 285(9): e21769, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39188032

RESUMO

The unitary mammary gland is a synapomorphy of therian mammals and is thought to have evolved from the pilosebaceous organ in the mammalian stem lineage from which the lactogenic patch of monotremes is also derived. One of the key lines of evidence for the homology of the nipple and the lactogenic patch is that marsupials have retained a transient hair associated with developing mammary glands. However, these structures have not been documented since the early 20th-century drawings of Ernst Bresslau. In this study, we examine the developing mammary organs of Monodelphis domestica and document the presence of mammary hairs in 12-week-old females, as well as their absence after 18 weeks of age. Histochemical staining for cystine confirms the structures as keratinized hairs. Milk ducts of both juvenile and adult nipples show a division between KRT18+ luminal epithelium and KRT14+ ACTA2+ myoepithelium. These patterns match those in eutherians and suggest a conserved ductal morphology and mechanism of milk expulsion. Finally, PTHLH, a peptide hormone which promotes homeotic transformation of hairy skin into hairless nipples in the mouse, was detected in the Monodelphis milk duct during the mammary hair stage, suggesting that the mutual exclusivity of "hairless nipple" and "hair" organ identity is derived in eutherian mammals. These results reveal shared characteristics of the M. domestica nipple with both the eutherian nipple and the pilosebaceous organ, consistent with the evolutionary derivation of the mammary gland from an ancestral hair organ via developmental individualization of pilosebaceous and mammary identities.


Assuntos
Glândulas Mamárias Animais , Monodelphis , Animais , Feminino , Monodelphis/anatomia & histologia , Glândulas Mamárias Animais/anatomia & histologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Cabelo/anatomia & histologia , Mamilos/anatomia & histologia , Evolução Biológica
2.
Nat Commun ; 15(1): 1152, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346980

RESUMO

The common human SNP rs3820282 is associated with multiple phenotypes including gestational length and likelihood of endometriosis and cancer, presenting a paradigmatic pleiotropic variant. Deleterious pleiotropic mutations cause the co-occurrence of disorders either within individuals, or across population. When adverse and advantageous effects are combined, pleiotropy can maintain high population frequencies of deleterious alleles. To reveal the causal molecular mechanisms of this pleiotropic SNP, we introduced this substitution into the mouse genome by CRISPR/Cas 9. Previous work showed that rs3820282 introduces a high-affinity estrogen receptor alpha-binding site at the Wnt4 locus. Here, we show that this mutation upregulates Wnt4 transcription in endometrial stroma, following the preovulatory estrogen peak. Effects on uterine transcription include downregulation of epithelial proliferation and induction of progesterone-regulated pro-implantation genes. We propose that these changes increase uterine permissiveness to embryo invasion, whereas they decrease resistance to invasion by cancer and endometriotic foci in other estrogen-responsive tissues.


Assuntos
Endometriose , Neoplasias , Gravidez , Feminino , Humanos , Animais , Camundongos , Endometriose/genética , Endometriose/metabolismo , Alelos , Endométrio/metabolismo , Estrogênios/metabolismo , Neoplasias/genética , Proteína Wnt4/genética
3.
iScience ; 27(1): 108593, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38174318

RESUMO

Gene expression change is a dominant mode of evolution. Mutations, however, can affect gene expression in multiple cell types. Therefore, gene expression evolution in one cell type can lead to similar gene expression changes in another cell type. Here, we test this hypothesis by investigating dermal skin fibroblasts (SFs) and uterine endometrial stromal fibroblasts (ESFs). The comparative dataset consists of transcriptomes from cultured SF and ESF of nine mammalian species. We find that evolutionary changes in gene expression in SF and ESF are highly correlated. The experimental dataset derives from a SCID mouse strain selected for slow cancer growth leading to substantial gene expression changes in SFs. We compared the gene expression profiles of SF with that of ESF and found a significant correlation between them. We discuss the implications of these findings for the evolutionary correlation between placental invasiveness and vulnerability to metastatic cancer.

4.
J Exp Zool B Mol Dev Evol ; 340(8): 486-495, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-34125492

RESUMO

An enduring problem in biology is explaining how novel functions of genes originated and how those functions diverge between species. Despite detailed studies on the functional evolution of a few proteins, the molecular mechanisms by which protein functions have evolved are almost entirely unknown. Here, we show that a polyalanine tract in the homeodomain transcription factor HoxA11 arose in the stem-lineage of mammals and functions as an autonomous repressor module by physically interacting with the PAH domains of SIN3 proteins. These results suggest that long polyalanine tracts, which are common in transcription factors and often associated with disease, may tend to function as repressor domains and can contribute to the diversification of transcription factor functions despite the deleterious consequences of polyalanine tract expansion.


Assuntos
Peptídeos , Fatores de Transcrição , Animais , Fatores de Transcrição/genética , Peptídeos/genética , Peptídeos/metabolismo , Regulação da Expressão Gênica , Mamíferos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
5.
MedComm (2020) ; 3(4): e174, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36186235

RESUMO

In this short paper, we argue that there is a fundamental connection between the medical sciences and evolutionary biology as both are sciences of biological variation. Medicine studies pathological variation among humans (and domestic animals in veterinary medicine) and evolutionary biology studies variation within and among species in general. A key principle of evolutionary biology is that genetic differences among species have arisen first from mutations originating within populations. This implies a mechanistic continuity between variation among individuals within a species and variation between species. This fact motivates research that seeks to leverage comparisons among species to unravel the genetic basis of human disease vulnerabilities. This view also implies that genetically caused diseases can be understood as extreme states of an underlying trait, that is, an axis of variation, rather than distinct traits, as often assumed in GWAS studies. We illustrate these points with a number of examples as diverse as anatomical birth defects, cranio-facial variation, preeclampsia and vulnerability to metastatic cancer.

6.
Front Cell Dev Biol ; 10: 927631, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147738

RESUMO

Multiple parallels exist between placentation and cancer dissemination at molecular, cellular, and anatomical levels, presenting placentation as a unique model to mechanistically understand the onset of cancer metastasis. In humans, interaction of placenta and the endometrium results eventually in deep invasion of placental extravillous trophoblasts (EVTs) into the maternal stroma, a process similar to stromal trespass by disseminating carcinoma cells. In anticipation of implantation, endometrial fibroblasts (ESFs) undergo a process called decidualization during the secretory phase of the menstrual cycle. Decidualization, among other substantial changes associated with ESF differentiation, also involves a component of fibroblast activation, and myofibroblast transformation. Here, using traction force microscopy, we show that increased cellular contractility in decidualized ESFs is reversed after interaction with EVTs. We also report here the large changes in energetic state of ESFs upon decidualization, showing increased oxidative phosphorylation, mitochondrial competency and ATP generation, as well as enhanced aerobic glycolysis, presenting mechanical contractility and energetic state as new functional hallmarks for decidualization. These energetic changes accompanying the marked increase in contractile force generation in decidualization were reduced in the presence of EVTs. We also show that increase in decidual contractility and mechanical resistance to invasion is achieved by SRF-MRTF transcriptional activation, achieved via increased phosphorylation of fibroblast-specific myosin light chain 9 (MYL9). EVT induced paracrine secretion of Heparin Binding Epidermal Growth Factor (HBEGF), a potent MAPK activator, which shifts the balance of SRF association away from MRTF based transcription, reducing decidual ESF contractility and mechanical resistance to placental invasion. Our results identify a new axis of intercellular communication in the placental bed modulating stromal force generation and resistance to invasion with concurrent downregulation of cellular energetics. These findings have important implications for implantation related disorders, as well as stromal control of cancer dissemination.

7.
Evol Med Public Health ; 10(1): 447-462, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36148042

RESUMO

CD44 is an extracellular matrix receptor implicated in cancer progression. CD44 increases the invasibility of skin (SF) and endometrial stromal fibroblasts (ESF) by cancer and trophoblast cells. We reasoned that the evolution of CD44 expression can affect both, the fetal-maternal interaction through CD44 in ESF as well as vulnerability to malignant cancer through expression in SF. We studied the evolution of CD44 expression in mammalian SF and ESF and demonstrate that in the human lineage evolved higher CD44 expression. Isoform expression in cattle and human is very similar suggesting that differences in invasibility are not due to the nature of expressed isoforms. We then asked whether the concerted gene expression increase in both cell types is due to shared regulatory mechanisms or due to cell type-specific factors. Reporter gene experiments with cells and cis-regulatory elements from human and cattle show that the difference of CD44 expression is due to cis effects as well as cell type-specific trans effects. These results suggest that the concerted expression increase is likely due to selection acting on both cell types because the evolutionary change in cell type-specific factors requires selection on cell type-specific functions. This scenario implies that the malignancy enhancing effects of elevated CD44 expression in humans likely evolved as a side-effect of positive selection on a yet unidentified other function of CD44. A possible candidate is the anti-fibrotic effect of CD44 but there are no reliable data showing that humans and primates are less fibrotic than other mammals.

8.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35110402

RESUMO

Among eutherian (placental) mammals, placental embedding into the maternal endometrium exhibits great differences, from being deeply invasive (e.g., humans) to noninvasive (e.g., cattle). The degree of invasion of placental trophoblasts is positively correlated with the rate of cancer malignancy. Previously, we have shown that fibroblasts from different species offer different levels of resistance to the invading trophoblasts as well as to cancer cell invasion. Here we present a comparative genomic investigation revealing cis-regulatory elements underlying these interspecies differences in invasibility. We identify transcription factors that regulate proinvasibility and antiinvasibility genes in stromal cells. Using an in vitro invasibility assay combined with CRISPR-Cas9 gene knockout, we found that the transcription factors GATA2 and TFDP1 strongly influence the invasibility of endometrial and skin fibroblasts. This work identifies genomic mechanisms explaining species differences in stromal invasibility, paving the way to therapies targeting stromal characteristics to regulate placental invasion, wound healing, and cancer dissemination.


Assuntos
Endométrio/metabolismo , Trofoblastos/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Endométrio/patologia , Feminino , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Técnicas de Inativação de Genes , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fator de Transcrição DP1/metabolismo , Trofoblastos/patologia
9.
Biol Reprod ; 106(1): 155-172, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34591094

RESUMO

The decidua is a hallmark of reproduction in many placental mammals. Differentiation of decidual stromal cells is known to be induced by progesterone and the cyclic AMP/protein kinase A (cAMP/PKA) pathway. Several candidates have been identified as the physiological stimulus for adenylyl cyclase activation, but their relative importance remains unclear. To bypass this uncertainty, the standard approach for in vitro experiments uses membrane-permeable cAMP and progestin. We phylogenetically infer that prostaglandin E2 (PGE2) likely was the signal that ancestrally induced decidualization in conjunction with progesterone. This suggests that PGE2 and progestin should be able to activate the core gene regulatory network of decidual cells. To test this prediction, we performed a genome-wide study of gene expression in human endometrial fibroblasts decidualized with PGE2 and progestin. Comparison to a cAMP-based protocol revealed shared activation of core decidual genes and decreased induction of senescence-associated genes. Single-cell transcriptomics of PGE2-mediated decidualization revealed a distinct, early-activated state transitioning to a differentiated decidual state. PGE2-mediated decidualization was found to depend upon progestin-dependent induction of PGE2 receptor 2 (PTGER2) which in turn leads to PKA activation upon PGE2 stimulation. Progesterone-dependent induction of PTGER2 is absent in opossum, an outgroup taxon of placental mammals which is incapable of decidualization. Together, these findings suggest that the origin of decidualization involved the evolution of progesterone-dependent activation of the PGE2/PTGER2/PKA axis, facilitating entry into a PKA-dominant rather than AKT-dominant cellular state. We propose the use of PGE2 for in vitro decidualization as an alternative to 8-Br-cAMP.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Decídua/citologia , Dinoprostona/farmacologia , Linhagem Celular Transformada , Células Cultivadas , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Decídua/fisiologia , Endométrio/citologia , Endométrio/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Acetato de Medroxiprogesterona/farmacologia , Gravidez , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Análise de Sequência de RNA , Análise de Célula Única
10.
Annu Rev Anim Biosci ; 10: 259-279, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34780249

RESUMO

Analogies between placentation, in particular the behavior of trophoblast cells, and cancer have been noted since the beginning of the twentieth century. To what degree these can be explained as a consequence of the evolution of placentation has been unclear. In this review, we conclude that many similarities between trophoblast and cancer cells are shared with other, phylogenetically older processes than placentation. The best candidates for cancer hallmarks that can be explained by the evolution of eutherian placenta are mechanisms of immune evasion. Another dimension of the maternal accommodation of the placenta with an impact on cancer malignancy is the evolution of endometrial invasibility. Species with lower degrees of placental invasion tend to have lower vulnerability to cancer malignancy. We finally identify several areas in which one could expect to see coevolutionary changes in placental and cancer biology but that, to our knowledge, have not been explored.


Assuntos
Neoplasias , Placentação , Animais , Feminino , Neoplasias/genética , Neoplasias/veterinária , Placenta , Gravidez , Trofoblastos
11.
Sci Transl Med ; 13(576)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441428

RESUMO

Inflammation contributes to nearly 4 million global premature births annually. Here, we used a mouse model of intrauterine inflammation to test clinically used formulations, as well as engineered nanoformulations, for the prevention of preterm birth (PTB). We observed that neither systemic 17a-hydroxyprogesterone caproate (Makena) nor vaginal progesterone gel (Crinone) was sufficient to prevent inflammation-induced PTB, consistent with recent clinical trial failures. However, we found that vaginal delivery of mucoinert nanosuspensions of histone deacetylase (HDAC) inhibitors, in some cases with the addition of progesterone, prevented PTB and resulted in delivery of live pups exhibiting neurotypical development. In human myometrial cells in vitro, the P4/HDAC inhibitor combination both inhibited cell contractility and promoted the anti-inflammatory action of P4 by increasing progesterone receptor B stability. Here, we demonstrate the use of vaginally delivered drugs to prevent intrauterine inflammation-induced PTB resulting in the birth of live offspring in a preclinical animal model.


Assuntos
Preparações Farmacêuticas , Nascimento Prematuro , Caproato de 17 alfa-Hidroxiprogesterona , Animais , Feminino , Nanomedicina , Gravidez , Nascimento Prematuro/tratamento farmacológico , Nascimento Prematuro/prevenção & controle , Progesterona , Progestinas
13.
Am J Obstet Gynecol ; 223(5): 624-664, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32707266

RESUMO

Women's health concerns are generally underrepresented in basic and translational research, but reproductive health in particular has been hampered by a lack of understanding of basic uterine and menstrual physiology. Menstrual health is an integral part of overall health because between menarche and menopause, most women menstruate. Yet for tens of millions of women around the world, menstruation regularly and often catastrophically disrupts their physical, mental, and social well-being. Enhancing our understanding of the underlying phenomena involved in menstruation, abnormal uterine bleeding, and other menstruation-related disorders will move us closer to the goal of personalized care. Furthermore, a deeper mechanistic understanding of menstruation-a fast, scarless healing process in healthy individuals-will likely yield insights into a myriad of other diseases involving regulation of vascular function locally and systemically. We also recognize that many women now delay pregnancy and that there is an increasing desire for fertility and uterine preservation. In September 2018, the Gynecologic Health and Disease Branch of the Eunice Kennedy Shriver National Institute of Child Health and Human Development convened a 2-day meeting, "Menstruation: Science and Society" with an aim to "identify gaps and opportunities in menstruation science and to raise awareness of the need for more research in this field." Experts in fields ranging from the evolutionary role of menstruation to basic endometrial biology (including omic analysis of the endometrium, stem cells and tissue engineering of the endometrium, endometrial microbiome, and abnormal uterine bleeding and fibroids) and translational medicine (imaging and sampling modalities, patient-focused analysis of menstrual disorders including abnormal uterine bleeding, smart technologies or applications and mobile health platforms) to societal challenges in health literacy and dissemination frameworks across different economic and cultural landscapes shared current state-of-the-art and future vision, incorporating the patient voice at the launch of the meeting. Here, we provide an enhanced meeting report with extensive up-to-date (as of submission) context, capturing the spectrum from how the basic processes of menstruation commence in response to progesterone withdrawal, through the role of tissue-resident and circulating stem and progenitor cells in monthly regeneration-and current gaps in knowledge on how dysregulation leads to abnormal uterine bleeding and other menstruation-related disorders such as adenomyosis, endometriosis, and fibroids-to the clinical challenges in diagnostics, treatment, and patient and societal education. We conclude with an overview of how the global agenda concerning menstruation, and specifically menstrual health and hygiene, are gaining momentum, ranging from increasing investment in addressing menstruation-related barriers facing girls in schools in low- to middle-income countries to the more recent "menstrual equity" and "period poverty" movements spreading across high-income countries.


Assuntos
Saúde Global , Letramento em Saúde , Produtos de Higiene Menstrual , Menstruação , Hemorragia Uterina , Saúde da Mulher , Adenomiose/fisiopatologia , Atitude , Evolução Biológica , Pesquisa Biomédica , Congressos como Assunto , Países em Desenvolvimento , Educação , Endometriose/fisiopatologia , Endométrio/citologia , Endométrio/microbiologia , Endométrio/fisiologia , Feminino , Humanos , Leiomioma/fisiopatologia , Distúrbios Menstruais/fisiopatologia , Células-Tronco Mesenquimais , Microbiota , Técnicas Analíticas Microfluídicas , National Institute of Child Health and Human Development (U.S.) , Regeneração/fisiologia , Células-Tronco/fisiologia , Terminologia como Assunto , Engenharia Tecidual , Estados Unidos , Neoplasias Uterinas/fisiopatologia , Útero/citologia , Útero/diagnóstico por imagem , Útero/microbiologia , Útero/fisiologia
14.
Reproduction ; 160(1): 39-51, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272449

RESUMO

Human reproductive success depends on a properly decidualized uterine endometrium that allows implantation and the formation of the placenta. At the core of the decidualization process are endometrial stromal fibroblasts (ESF) that differentiate to decidual stromal cells (DSC). As variations in oxygen levels are functionally relevant in endometrium both upon menstruation and during placentation, we assessed the transcriptomic responses to hypoxia in ESF and DSC. In both cell types, hypoxia-upregulated genes in classical hypoxia pathways such as glycolysis and the epithelial mesenchymal transition. In DSC, hypoxia restored an ESF-like transcriptional state for a subset of transcription factors that are known targets of the progesterone receptor, suggesting that hypoxia partially interferes with progesterone signaling. In both cell types, hypoxia modified transcription of several inflammatory transcription factors that are known regulators of decidualization, including decreased transcription of STATs and increased transcription of CEBPs. We observed that hypoxia-upregulated genes in ESF and DSC had a significant overlap with genes previously detected to be upregulated in endometriotic stromal cells. Promoter analysis of the genes in this overlap suggested the hypoxia-upregulated Jun/Fos and CEBP transcription factors as potential drivers of endometriosis-associated transcription. Using immunohistochemistry, we observed increased expression of JUND and CEBPD in endometriosis lesions compared to healthy endometria. Overall, the findings suggest that hypoxic stress establishes distinct transcriptional states in ESF and DSC and that hypoxia influences the expression of genes that contribute to the core gene regulation of endometriotic stromal cells.


Assuntos
Decídua/metabolismo , Endometriose/genética , Endométrio/metabolismo , Regulação da Expressão Gênica , Hipóxia/fisiopatologia , Células Estromais/metabolismo , Transcriptoma , Células Cultivadas , Decídua/patologia , Endometriose/metabolismo , Endometriose/patologia , Endométrio/patologia , Feminino , Humanos , Gravidez , Células Estromais/patologia
16.
Nat Ecol Evol ; 3(12): 1743-1753, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31768023

RESUMO

Among mammals, placental invasion is correlated with vulnerability to malignancy. Animals with more invasive placentation (for example, humans) are more vulnerable to malignancy. To explain this correlation, we propose the hypothesis of 'Evolved Levels of Invasibility' proposing that the evolution of invasibility of stromal tissue affects both placental and cancer invasion. We provide evidence for this using an in vitro model. We find that bovine endometrial and skin fibroblasts are more resistant to invasion than are their human counterparts. Gene expression profiling identified genes with high expression in human but not in bovine fibroblasts. Knocking down a subset of them in human fibroblasts leads to stronger resistance to cancer cell invasion. Identifying the evolutionary determinants of stromal invasibility can provide important insights to develop rational antimetastatic therapeutics.


Assuntos
Fibroblastos , Mamíferos , Animais , Bovinos , Feminino , Perfilação da Expressão Gênica , Humanos , Gravidez
17.
Biol Lett ; 15(7): 20190374, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31288683

RESUMO

Invasive placentation with extended pregnancy is a shared derived characteristic unique to eutherian mammals that possess a highly effective system of haemostasis, platelets. These are found in all mammals but no other group of animals. We propose that platelets and megakaryocytes (large polyploid nucleated bone marrow cells that produce platelets) evolved from an ancestral 2 N thrombocyte by polyploidization and that the possession of platelets enabled the evolution of invasive placentation. This could explain why invasive placentation is limited to mammals.


Assuntos
Eutérios , Placentação , Animais , Plaquetas , Feminino , Mamíferos , Placenta , Gravidez
18.
Reprod Sci ; 26(3): 323-336, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30309298

RESUMO

Decidual stromal cells differentiate from endometrial stromal fibroblasts (ESFs) under the influence of progesterone and cyclic adenosine monophosphate (cAMP) and are essential for implantation and the maintenance of pregnancy. They evolved in the stem lineage of placental (eutherian) mammals coincidental with the evolution of implantation. Here we use the well-established in vitro decidualization protocol to compare early (3 days) and late (8 days) gene transcription patterns in immortalized human ESF. We document extensive, dynamic changes in the early and late decidual cell transcriptomes. The data suggest the existence of an early signal transducer and activator of transcription (STAT) pathway dominated state and a later nuclear factor κB (NFKB) pathway regulated state. Transcription factor expression in both phases is characterized by putative or known progesterone receptor ( PGR) target genes, suggesting that both phases are under progesterone control. Decidualization leads to proliferative quiescence, which is reversible by progesterone withdrawal after 3 days but to a lesser extent after 8 days of decidualization. In contrast, progesterone withdrawal induces cell death at comparable levels after short or long exposure to progestins and cAMP. We conclude that decidualization is characterized by a biphasic gene expression dynamic that likely corresponds to different phases in the establishment of the fetal-maternal interface.


Assuntos
Decídua/metabolismo , Fibroblastos/metabolismo , Células Estromais/metabolismo , Transcriptoma , Diferenciação Celular , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Humanos , Medroxiprogesterona/administração & dosagem
19.
PLoS Biol ; 16(8): e2005594, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30142145

RESUMO

Among animal species, cell types vary greatly in terms of number and kind. The number of cell types found within an organism differs considerably between species, and cell type diversity is a significant contributor to differences in organismal structure and function. These observations suggest that cell type origination is a significant source of evolutionary novelty. The molecular mechanisms that result in the evolution of novel cell types, however, are poorly understood. Here, we show that a novel cell type of eutherians mammals, the decidual stromal cell (DSC), evolved by rewiring an ancestral cellular stress response. We isolated the precursor cell type of DSCs, endometrial stromal fibroblasts (ESFs), from the opossum Monodelphis domestica. We show that, in opossum ESFs, the majority of decidual core regulatory genes respond to decidualizing signals but do not regulate decidual effector genes. Rather, in opossum ESFs, decidual transcription factors function in apoptotic and oxidative stress response. We propose that rewiring of cellular stress responses was an important mechanism for the evolution of the eutherian decidual cell type.


Assuntos
Decídua/fisiologia , Estresse Fisiológico/fisiologia , Animais , Evolução Biológica , Endométrio/fisiologia , Evolução Molecular , Feminino , Fibroblastos , Mamíferos , Monodelphis/fisiologia , Estresse Fisiológico/genética , Células Estromais/metabolismo , Células Estromais/fisiologia , Fatores de Transcrição/metabolismo
20.
N Engl J Med ; 377(12): 1156-1167, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28877031

RESUMO

BACKGROUND: Despite evidence that genetic factors contribute to the duration of gestation and the risk of preterm birth, robust associations with genetic variants have not been identified. We used large data sets that included the gestational duration to determine possible genetic associations. METHODS: We performed a genomewide association study in a discovery set of samples obtained from 43,568 women of European ancestry using gestational duration as a continuous trait and term or preterm (<37 weeks) birth as a dichotomous outcome. We used samples from three Nordic data sets (involving a total of 8643 women) to test for replication of genomic loci that had significant genomewide association (P<5.0×10-8) or an association with suggestive significance (P<1.0×10-6) in the discovery set. RESULTS: In the discovery and replication data sets, four loci (EBF1, EEFSEC, AGTR2, and WNT4) were significantly associated with gestational duration. Functional analysis showed that an implicated variant in WNT4 alters the binding of the estrogen receptor. The association between variants in ADCY5 and RAP2C and gestational duration had suggestive significance in the discovery set and significant evidence of association in the replication sets; these variants also showed genomewide significance in a joint analysis. Common variants in EBF1, EEFSEC, and AGTR2 showed association with preterm birth with genomewide significance. An analysis of mother-infant dyads suggested that these variants act at the level of the maternal genome. CONCLUSIONS: In this genomewide association study, we found that variants at the EBF1, EEFSEC, AGTR2, WNT4, ADCY5, and RAP2C loci were associated with gestational duration and variants at the EBF1, EEFSEC, and AGTR2 loci with preterm birth. Previously established roles of these genes in uterine development, maternal nutrition, and vascular control support their mechanistic involvement. (Funded by the March of Dimes and others.).


Assuntos
Predisposição Genética para Doença , Variação Genética , Idade Gestacional , Fatores de Alongamento de Peptídeos/genética , Nascimento Prematuro/genética , Receptor Tipo 2 de Angiotensina/genética , Transativadores/genética , Adenilil Ciclases/genética , Conjuntos de Dados como Assunto , Feminino , Estudo de Associação Genômica Ampla , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Gravidez , Análise de Regressão , Proteína Wnt4/genética , Proteínas ras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA